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Abstract 

Naturally occurring radio noise above approximately 100 MHz is well modeled for 

most applications as a Gaussian random process; however, atmospheric radio noise 

below 100 MHz is often impulsive in nature and is not well modeled as Gaussian. 

Atmospheric events (mainly lightning strokes, which create electromagnetic emis- 

sions known as sferics) produce large, clustered impulses in the noise waveform seen 

at a receiving antenna, causing the waveform to vary greatly from typical Gaus- 

sian background noise. Due to large variations in sferic activity on a seasonal and 

diurnal basis and with the passing of individual storms, atmospheric noise is also 

non-stationary. 

The objective of this work is the statistical characterization and modeling of 

atmospheric radio noise in the range 10 Hz - 60 kHz (denoted low-frequency noise), 

with the specific goal of improving communication systems operating in this range. 

The analyses are based on many thousands of hours of measurements made by the 

Stanford Radio Noise Survey System. 

The statistics analyzed include seasonal and diurnal variations, amplitude prob- 

ability distributions (APDs), impulse interarrival time distributions, background 

noise statistics, and power spectral densities. Noise characteristics derived from 

these analyses are presented, and several noise models that accurately represent 

low-frequency noise APDs are compared. The most accurate model for representing 

low-frequency noise APDs is found to depend on geographic location, time of year 

and day, bandwidth, and center frequency, but two of the simplest models (i.e., 

each with only two parameters) are found to give extremely good performance in 

general.  These are the Hall and alpha-stable (or a-stable) models, both of which 
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approximate the Rayleigh distribution for low amplitude values but decay with an 

inverse power law for high amplitude values. It is concluded that the Hall model 

is the optimal choice in terms of accuracy and simplicity for locations exposed to 

heavy sferic activity (e.g., low-latitude regions), and the «-stable model is best for 

locations relatively distant from heavy sferic activity (e.g., high-latitude regions). 

Based on the statistical characteristics of the noise data, a new clustering Poisson 

atmospheric noise model is developed. This model is based on several previously 

known statistical-physical models, but in addition takes into account the clustering 

of sferic impulses. It is shown that the clustering model accurately predicts the 

statistical features found in low-frequency radio noise data. 

Finally, since many low-frequency digital communication systems operate in 

high-latitude regions, which are relatively distant from heavy sferic activity, it is 

of value to compare the bit error rate (BER) performance of receivers specifically 

designed for a-stable noise with the BER performance of conventional low-frequency 

receivers. The communication signal formats examined are quadrature phase-shift 

keying (QPSK) and 16 point quadrature amplitude modulation (16 QAM). Hun- 

dreds of simulations using time-series data from various times and locations and at 

various center frequencies and bandwidths are performed, and the following results 

are found uniformly: for QPSK signals, virtually no performance improvement is 

gained when using an a-stable receiver instead of the best conventional receiver, but 

for 16 QAM signals, an improvement of several dB is gained by using an a-stable 

receiver. 



Acknowledgments 

In this section, I wish to acknowledge those responsible for the success of my research 

project at Stanford. 

First and foremost, I wish to thank Professor Antony C. Fraser-Smith, my prin- 

cipal research adviser, for his technical guidance and financial support throughout 

the duration of my work. I also thank him for his wisdom regarding numerous as- 

pects of life and his example as a great person, for these have left impressions that 

will last well beyond my stay at Stanford. 

In addition, I would like to thank the following individuals: Professor Robert 

A. Helliwell, my associate adviser, for his infusion of ideas and energy into this 

research project from beginning to end; Professor Abbas El Gamal, for suggestions 

that greatly improved the results of Chapter 4 and for a variety of worthwhile 

interactions during my time at Stanford; and Professor Howard Zebker, for serving 

as the fourth member of my defense panel. 

Acknowledgments also go to Professor Dwight Nishimura, Marianne Marx and 

Hadar Avi-Itzhak for helping me become established at Stanford; to Thomas Liu 

for his useful suggestions throughout this research; to my parents for their tireless 

efforts to enhance my education and quality of life; and to all my family and friends 

(especially Kim) who were supportive along the way. 

This research was sponsored by the Office of Naval Research through Grants 

No. N00014-92-J-1576 and No. N00014-93-1-1073. Logistic support for the mea- 

surements at S0ndrestromfj0rd, Greenland, and Arrival Heights, Antarctica, was 

provided by the National Science Foundation through NSF cooperative agreement 

ATM 88-22560, and NSF grants DPP-8720167 and OPP-9119552, respectively. 

VI 



Contents 

Abstract iv 

Acknowledgments vi 

1 Introduction 1 

1.1 ELF/VLF/LF Noise  2 

1.1.1    Spectral Content  3 

1.2 The Stanford ELF/VLF Radio Noise Survey  5 

1.2.1 Noise Amplitude Data  6 

1.2.2 Time-Series Data  8 

1.3 Outline of the Dissertation  9 

1.4 Contributions  10 

2 Measured Statistics 11 

2.1 Introduction  11 

2.2 Long-Term Noise Averages  11 

2.2.1 Seasonal Variations  12 

2.2.2 Diurnal Variations     16 

2.3 Amplitude Probability Distributions      19 

2.4 Impulse Interarrival Distributions  21 

2.5 Correlations Between Impulses  23 

2.6 Background Noise Statistics  24 

2.7 Conclusions  24 

vii 



Comparison of APD Models 26 

3.1 Introduction  26 

3.2 Amplitude pdf Models  27 

3.2.1 Hall Model      28 

3.2.2 Field-Lewinstein Model  28 

3.2.3 Alpha-Stable Model  29 

3.3 Determining APDs of the data      31 

3.4 Data Analysis  32 

3.4.1 Results by Station     34 

3.4.2 Parameters of the Models  38 

3.4.3 Error Across Dynamic Range  41 

3.4.4 Typical Parameter Values  43 

3.4.5 ELF Results  43 

3.5 Voltage Deviation  44 

3.6 Conclusions  45 

Clustering Poisson Model 46 

4.1 Introduction  46 

4.2 Review of Existing Models  47 

4.2.1 A Non-Clustering Statistical-Physical Poisson Model  48 

4.2.2 Definition of the Clustering Poisson Model  50 

4.2.3 Specification of Clusters  51 

4.2.4 Length of Clusters  52 

4.3 Probability Density Function of Clustered Poisson Noise  53 

4.3.1 Probability Density Function of the Noise Envelope  60 

4.3.2 Validity of Parameters  62 

4.3.3 Arbitrary Receiver Gain Pattern  63 

4.4 Impulse Interarrival Distribution of Clustered Poisson Noise  64 

4.4.1 Waiting Time pdf  65 

4.4.2 Interarrival Time pdf  67 

4.4.3 Data Analysis  68 

viii 



4.4.4    Physical Justification of the Model  68 

4.5 Power Spectral Density of Clustered Poisson Noise  71 

4.6 Conclusions  

5 Low-Frequency Communications ' ° 

5.1 Introduction  

5.2 Receiver Structures for Impulsive Noise  79 

5.2.1 Maximum-Likelihood Detection  80 

5.2.2 Conventional Nonlinear Receivers  81 

5.2.3 Previous Receiver Studies  83 

5.3 Alpha-Stable Maximum Likelihood Receivers  84 
5.3.1 Parameter Estimations of Alpha-Stable Distributions  85 

5.3.2 Realizations of Alpha-Stable Receivers  86 

5.4 Simulation Results  87 

5.5 Conclusions  

qc 
6 Conclusions 

6.1 Summary of Results      95 

6.2 Topics for Future Research  96 

no 
Bibliography 

IX 



List of Tables 

1.1    Center frequencies and bandwidths for the 16 narrowband channels 

of the ELF/VLF radiometer      7 

3.1 Parameter values for the Hall, Field-Lewinstein and a-stable models 

in Figure 3.4 38 

3.2 Parameter values for the Hall, Field-Lewinstein and a-stable models 

in Figure 3.5 38 

4.1    Parameter values of the clustering Poisson pdf's in Figure 4.1    ....   68 

x 



List of Figures 

1.1 Stanford ELF Spectrogram, 25 August 1987, at 00:04 UT  3 

1.2 Arrival Heights VLF Spectrogram, 08 May 1995, at 16:05 UT  4 

1.3 Grafton, New Hampshire VLF Spectrogram, 20 July 1988, at 00:05 

UT  5 

2.1 Noise averages in the 10 Hz frequency band recorded June 1994, at 

Arrival Heights, Antarctica. Each of the 720 points on this plot is an 

average of one hour of data 12 

2.2 Monthly variation of ELF/VLF radio noise at Stanford, California, 

for the eight lowest-frequency channels. The years 1986 to 1993 are 

included 14 

2.3 Monthly variation of ELF/VLF radio noise at Stanford, California, 

for the eight highest-frequency channels. The years 1986 to 1993 are 

included 15 

2.4 Diurnal variation of ELF/VLF radio noise at Arrival Heights, Antarc- 

tica, during the month of January for the eight lowest-frequency chan- 

nels. The years 1985 to 1994 are included 17 

2.5 Diurnal variation of ELF/VLF radio noise at Arrival Heights, Antarc- 

tica, during the month of July for the eight lowest-frequency channels. 

The years 1985 to 1994 are included 18 

2.6 Thule envelope pdf compared to a Rayleigh distribution with the 

same initial slope. The data are normalized such that E[A] = 1.   ...   21 

2.7 Stanford ELF broadband data, 01 April 1990, at 01:04 UT. Dotted 

lines are shown at ±5 and ±10 times the norm of the noise 22 

XI 



2.8 Impulse interarrival pdf for Arrival Heights, December 1995, for the 

25.5 - 27.5 kHz noise band, with the impulse detection threshold set 

at 20 times the norm of the noise 22 

3.1 The a-stable pdf for a = 1.0 (Cauchy), 1.6, 1.95 and 2.0 (Gaussian), 

and 7 = 1.0; only positive abscissa values are shown 30 

3.2 Errors of the Hall (dashed line) and a-stable (solid line) models as a 

function of frequency and season at S0ndrestr0m 35 

3.3 Errors of the Hall, Field-Lewinstein and a-stable models as a function 

of frequency and season at Grafton, New Hampshire 37 

3.4 Fit of the Hall, Field-Lewinstein and a-stable pdf models to a sample 

of Arrival Heights data 39 

3.5 Fit of the Hall, Field-Lewinstein and a-stable pdf models to a sample 

of Grafton data 40 

3.6 Errors of the Hall, Field-Lewinstein and a-stable pdf models in fitting 

the data of Figures 3.4 and 3.5 42 

4.1 Fit of the clustering Poisson impulse interarrival pdf, Eq. (4.71) (dot- 

ted lines), to Arrival Heights impulse interarrival data. The threshold 

levels are 5, 10, 15 and 20 times the first moment of the noise 69 

4.2 Spectral content of individual sferics versus clusters of sferics. The 

data are from June 1986, at Thule, Greenland. There is a lowpass 

filter inserted near 7 kHz. The spikes below 5 kHz are power line 

harmonics, and the spikes above 10 kHz are other man-made signals 

as in Figures 1.2 and 1.3 76 

5.1 Typical BER curve for QPSK noise, comparing linear, limiter, clipper, 

log correlator and a-stable receivers. The data are from June 1996 at 

Arrival Heights. The "linear" solid line is to the right of the "stable" 

solid line 89 

Xll 



5.2 Typical BER curve for 16 QAM noise, comparing linear, limiter, clip- 

per, log correlator and a-stable receivers. The data are from June 

1996 at Arrival Heights. The "linear" solid line is to the right of the 

"stable" solid line 90 

5.3 BER comparison of four realizations of the a-stable receiver 90 

5.4 BER curves for five different symbol times using an a-stable receiver. 

The noise data are from June 1986 at Thule, Greenland, with a 

43.4 kHz center frequency 92 

5.5 QPSK vs. 16 QAM, with 16 QAM at half the symbol rate of QPSK. 

The noise data are from Thule, Greenland, with a 43.4 kHz center 

frequency and a 600 Hz bandwidth 93 

xni 



Chapter 1 

Introduction 

Naturally occurring radio noise above approximately 100 MHz is well modeled for 

most applications as a Gaussian random process; however, atmospheric radio noise 

below 100 MHz is often impulsive in nature and is not well modeled as Gaussian. 

Atmospheric events (mainly lightning strokes, which create electromagnetic emis- 

sions known as sferics) produce large, clustered impulses in the noise waveform seen 

at a receiving antenna, causing the waveform to vary greatly from typical Gaus- 

sian background noise. Due to large variations in sferic activity on a seasonal and 

diurnal basis and with the passing of individual storms, atmospheric noise is also 

non-stationary. 

The objective of this work is the statistical analysis, characterization and mod- 

eling of atmospheric radio noise in the frequency range 10 Hz - 60 kHz, with the 

specific goal of improving communication systems operating in this range. The anal- 

yses are based on many thousands of hours of measurements made by the Stanford 

Radio Noise Survey System. 

This chapter begins with an overview of 10 Hz - 60 kHz radio noise, which 

includes most or all of the extremely-low frequency (ELF; 3 Hz - 3 kHz), very-low 

frequency (VLF; 3 kHz - 30 kHz) and low frequency (LF; 30 kHz - 300 kHz) bands. 

Following this overview is a description of the measurement systems used to collect 

the noise data. The contents of each chapter are then summarized, and finally, 

the main contributions of the dissertation are presented. From this point on, the 

1 



CHAPTER 1.   INTRODUCTION 2 

terms ELF, VLF and LF refer to the individual frequency bands, while the term 

low-frequency refers specifically to the 10 Hz - 60 kHz range measured by the Noise 

Survey System. 

1.1    ELF/VLF/LF Noise 

ELF/VLF/LF radio noise is comprised of both man-made and natural signals. Ex- 

amples of man-made signals are power line harmonics, communication signals and 

interference from electrically powered machinery; naturally occurring noise includes 

sferics, whistlers, polar chorus and auroral hiss. Naturally occurring noise is dis- 

cussed below, but for a more thorough treatment see Helliwell [24]. 

Sferics are typically the dominant source of naturally occurring low-frequency 

radio noise. Even though lightning activity mainly occurs in tropical regions (and 

thus at lower latitudes), sferics can propagate for thousands of miles with little 

attenuation, so they are seen in noise data worldwide. The amount of sferic activity 

in a given noise sample depends on the worldwide source distribution of lightning 

relative to the receiver location, with nearby storms contributing a great deal and 

distant storms contributing less. 

Whistlers are bursts of electromagnetic energy that travel into the ionosphere, 

follow the lines of force of the earth's magnetic field, and come back into the atmo- 

sphere at roughly the same latitude and longitude in the opposite hemisphere. The 

dispersion of the medium in which they travel causes them to have a time-frequency 

characteristic that sounds like a "chirp" or "whistle" when converted to an audible 

signal. 

Polar chorus and auroral hiss are VLF emissions that are generated in the iono- 

sphere and/or magnetosphere and have distinct spectral signatures. Both are found 

primarily in the polar regions. Polar chorus refers to sequences of discrete signals 

that often come in bursts and have a chirping frequency characteristic; auroral hiss 

is thermal-like noise within a given bandpass frequency range. At high-latitude sites, 

it is possible for auroral hiss to dominate the noise completely and drown out even 

the strongest sferics. 
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Figure 1.1: Stanford ELF Spectrogram, 25 August 1987, at 00:04 UT. 

It must be noted that none of the radio noise analyzed in this dissertation is 

comprised of whistlers, chorus or hiss to a noticeable degree, so the results contained 

within are only known to apply to atmospheric noise. 

1.1.1    Spectral Content 

A sample ELF spectrogram from Stanford, California, is shown in Figure 1.1. The 

first eight seconds include a calibration tone: harmonics spaced 10 Hz apart with 10 

pico-Tesla (pT) magnitudes. It is easily seen from the calibration tone that notch 

filters are installed at 60, 120, 180 and 300 Hz, in order to help remove power line 

harmonics that otherwise would use up most of the dynamic range. The rolloff 

above 400 Hz is due to an anti-aliasing filter. The vertical lines are sferics, each 

representing a lightning stroke that could be many thousands of kilometers away. 

A sample VLF spectrogram for eight seconds of Arrival Heights data is shown in 

Figure 1.2. The first one second includes a calibration tone: harmonics spaced 250 

Hz apart with 0.1 pT magnitudes. There is a single pole highpass filter with a cutoff 

frequency of 5 kHz to remove power line harmonics. Once again a number of sferics 
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Figure 1.2: Arrival Heights VLF Spectrogram, 08 May 1995, at 16:05 UT. 

can be seen, the strongest of which occur at 0.7, 6.5 and 7.4 seconds. The line at 10 

kHz is an instrumentation signal, and the dashed horizontal lines between 10 kHz 

and 14 kHz on the order of one second in length are from the Omega navigation 

system [27]. The horizontal lines above 15 kHz are from communication systems, 

primarily phase shift keyed digital systems transmitting on the order of 100 - 200 

baud. When these lines are crossed by the dark vertical lines, sferics are likely to 

be causing bit errors. 

A sample VLF spectrogram for eight seconds of Grafton, New Hampshire data 

is shown in Figure 1.3. A great deal of sferic activity is seen, and the sferics are 

strong enough to clearly dominate the calibration tone. This is because Grafton is 

much closer to thunderstorm activity than Arrival Heights, and in addition July is 

the peak of the North American storm season and 00 UT is the peak of the North 

American diurnal cycle [3, 5]. The term heavy sferic activity is used throughout this 

dissertation to refer to the condition of numerous (and often overlapping) sferics 

as seen in Figure 1.3, while the term light sferic activity is used to describe the 

condition of sporadic (but possibly large) impulses as in Figure 1.2. 
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Figure 1.3: Grafton, New Hampshire VLF Spectrogram, 20 July 1988, at 00:05 UT. 

It is seen in Figures 1.1 to 1.3 that power decreases with increasing frequency 

above a given range; this is due to the physical mechanism of lightning and to 

propagation effects. The power spectral density of low-frequency radio noise falls off 

in general as f~2 up to 2 - 3 kHz, rises up to 10 kHz, then drops off steeply (greater 

than /~4) throughout the VLF and LF ranges [25, 28]. Propagation mode changes 

due to the earth-ionosphere waveguide cutoff account for the 2-10 kHz amplitude 

change. 

1.2    The Stanford ELF/VLF Radio Noise Survey 

During the years 1985-1986, eight ELF/VLF (10 Hz - 32 kHz) radio noise mea- 

surement systems, or radiometers, were installed at a variety of high-latitude and 

mid-latitude sites in an effort to fill large gaps in the information available on radio 

noise in this frequency range [13, 14]. Other ELF/VLF measurement systems have 

been implemented in the past, but this is the only system of its kind in terms of its 

geographic coverage and continuity of simultaneous data collection. The project was 
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a follow-on to a number of previous atmospheric, ionospheric and magnetospheric 

studies conducted by the Space, Telecommunications and Radioscience (STAR) lab- 

oratory at Stanford (e.g., Bell and Helliwell [1, 24]). 

The radiometers are located at Arrival Heights, Antarctica (AH; 78°S, 167°E); 

Dunedin, New Zealand (DU; 46°£, 170°£); Grafton, New Hampshire (GN; 44°N, 

72°W); Kochi, Japan (KO; 33°N, 133°£); L'Aquila, Italy (AQ; 42°iV, 13°£); 

S0ndrestromfj0rd, Greenland (SS; 67°N, 51°W); Stanford, California (SU; 37°N, 

122°W); and Thule, Greenland (TH; 77°N, 69°W). Most of the stations operated 

much longer than program expectations, and the systems at Stanford and Arrival 

Heights are still operating. They should be able to collect data beyond one solar cy- 

cle. A complete technical description of the radiometers is provided in Fraser-Smith 

and Helliwell [13], so only an overview is presented here. 

Each radiometer contains two receivers, one for the 10 - 400 Hz frequency range 

(designated ELF) and the other for the 400 Hz - 32 kHz frequency range (designated 

VLF). Each receiver has its own pair of crossed loop antennas, one oriented in the 

N-S geomagnetic direction and the other in the E-W geomagnetic direction. The 

ELF antennas are 1164 turn coils that are either buried or enclosed in order to 

prevent noise due to wind induced motion of the coils in the earth's magnetic field. 

The VLF antennas are single-turn triangular above-ground loops 18 meters wide and 

9 meters high. The Thule, Greenland station has an additional receiver containing a 

downconverter with a 30 kHz translation frequency, thus allowing data in the lower 

part of the LF range (30 kHz - 60 kHz) to be collected and analyzed. 

1.2.1    Noise Amplitude Data 

Continuous data collection is obtained from the radiometers by monitoring the out- 

puts of a bank of sixteen narrowband channel filters with center frequencies dis- 

tributed roughly logarithmically across the 10 Hz - 32 kHz band. Each of the 32 

filters (the N-S and E-W loops must be filtered separately) is a six pole Chebychev 

bandpass filter with a two-sided bandwidth equal to five percent of the center fre- 

quency. The sixteen center frequencies and band widths are listed in Table 1.1: the 



CHAPTER 1.   INTRODUCTION 

Channel Frequency Bandwidth 
1 10 Hz 0.5 Hz 
2 30 1.5 
3 80 4 
4 135 6.75 
5 275 13.75 
6 380 19 
7 500 25 
8 750 Hz 37.5 
9 1kHz 50 
10 1.5 75 
11 2 100 
12 3 150 
13 4 200 
14 8 400 
15 10.2 510 
16 32 kHz 1600 Hz 

Table 1.1: Center frequencies and bandwidths for the 16 narrowband channels of 
the ELF/VLF radiometer. 

first six are within the ELF receiver's frequency range and the last ten are within the 

VLF receiver's. The 10.2 kHz center frequency of channel 15 was chosen specifically 

to record signals from the Omega Navigation System (for propagation studies), but 

the other center frequencies were chosen to be free of man-made interference. 

Each filter's output is passed through an analog root-mean-square (RMS) detec- 

tor that squares the input, performs a time average, and outputs the square root 

of the average. The RMS detector output is then sampled at a rate of ten times 

per second by an analog to digital converter and sent to a digital computer, which 

then computes the root-sum-square of the N-S and E-W detector outputs to de- 

termine the RMS amplitude of the horizontal component of magnetic field for each 

channel. The analog to digital converters have a useful dynamic range of 70 dB, but 

switchable gain amplifiers in the analog receiver circuitry increase the total system 

dynamic range to 100 dB. The measurements taken are of absolute noise levels. 

In order to save digital tape space, the computer writes out only every tenth 

sample. However, it also stores the average and RMS values for each minute (600 



CHAPTER 1.   INTRODUCTION 8 

samples), along with the minimum and maximum of the 600 values for that minute. 

The seasonal and diurnal variations reported in Chapter 2 are derived from these 

one minute average amplitudes. 

1.2.2    Time-Series Data 

ELF broadband time-series data are collected for one minute every half hour, and 

are sampled at a 1 kHz sampling rate by a 14 bit digital to analog converter. A 

400 Hz lowpass filter is inserted before the D/A to prevent aliasing. The VLF 

and LF broadband time-series data are collected for one minute every hour; the 

sampling rate for these data is 62.5 kHz and the D/A converter is 16 bits. The 

anti-aliasing filter is set at either 20 kHz or 30 kHz depending on which part of the 

frequency spectrum is to be analyzed. (The 30 kHz filter allows some aliasing at 

lower frequencies but does not distort the 20 kHz - 30 kHz range). The LF data at 

Thule, once downconverted, are processed the same as the VLF data. 

The ELF time-series data, like the noise amplitude data, are calibrated to abso- 

lute levels and digitally recorded. The VLF time-series data, however, are recorded 

to analog tape and digitized later. Due to concerns about the flatness of frequency 

response in the measurement process, the VLF time-series data are restricted to nar- 

rowband analyses and their amplitudes within a given frequency band of analysis 

are normalized to an expected value of one. 

Only one axis (the N-S loop) is recorded for the time series data, so the data 

are collected with a direction dependent gain pattern. Fortunately, this is shown 

not to affect the theoretical results of the dissertation or the comparison of these 

results to the noise, but it does preclude the use of direction finding information in 

the statistical analysis of the noise. 
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1.3    Outline of the Dissertation 

This dissertation is concerned with the statistical analysis and modeling of low- 

frequency radio noise and the improvement of low-frequency communications. Chap- 

ter 2 discusses statistical analysis results, Chapters 3 and 4 are concerned with noise 

modeling, and Chapter 5 addresses low-frequency communications. 

The statistics analyzed in Chapter 2 include seasonal and diurnal variations, 

amplitude probability distributions (APDs), impulse interarrival time distributions, 

correlations between noise impulses, and background noise statistics. Noise char- 

acteristics derived from the analyses are presented, and are used in the following 

chapters to aid in the modeling problem. 

In Chapter 3, APDs derived from thousands of hours of ELF/VLF/LF noise 

survey data are compared to the APDs of various low-frequency noise models. The 

most accurate model for representing low-frequency noise APDs is found to depend 

on geographic location, time of year and day, bandwidth, and center frequency, 

but two of the simplest models (i.e., each with only two parameters) are found to 

give extremely good performance in general. These are the Hall and alpha-stable 

(or a-stable) models, both of which approximate the Rayleigh distribution for low 

amplitude values but decay with an inverse power law for high amplitude values. 

It is concluded that the Hall model is the optimal choice in terms of accuracy and 

simplicity for locations exposed to heavy sferic activity (e.g., low-latitude regions), 

and the a-stable model is best for locations relatively distant from heavy sferic 

activity (e.g., high-latitude regions). 

Chapter 4 develops a new clustering Poisson atmospheric noise model based on 

the statistical characteristics of the noise data found in Chapters 2 and 3. This 

model is similar to several previously known statistical-physical models, but in ad- 

dition accounts for the clustering of sferics. It is verified that the clustering model 

accurately predicts the statistical features found in low-frequency noise data. 

Chapter 5 compares the bit error rate (BER) performance of receivers specifically 

designed for a-stable noise with that of conventional nonlinear analog receivers used 
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with impulsive noise, such as clippers, limiters and log-correlators. The communi- 

cation signal formats examined are quadrature phase-shift keying (QPSK) and 16 

point quadrature amplitude modulation (16 QAM). Hundreds of simulations using 

time-series data from various times and locations and at various center frequencies 

and bandwidths are performed, and the following results are found uniformly: for 

QPSK signals, virtually no performance improvement is gained when using an te- 

stable receiver instead of the best conventional receiver, but for 16 QAM signals, an 

improvement of several dB is gained by using an a-stable receiver. 

Finally, Chapter 6 summarizes the main results of this dissertation and suggests 

topics of future research. 

1.4    Contributions 

Here is a brief summary of the contributions made in this dissertation. 

• Statistical analysis of thousands of hours of globally collected low-frequency 

radio noise (Chapter 2). 

• Comparison of APD models used for modeling low-frequency noise (Chap- 

ter 3). 

• Development of a clustering Poisson model for atmospheric noise and proof 

that the model accurately predicts low-frequency noise statistics (Chapter 4). 

• Comparison of receivers designed for a-stable noise to conventional receivers 

(Chapter 5). 



Chapter 2 

Measured Statistics 

2.1    Introduction 

This chapter presents an overview of some of the statistical characteristics of nat- 

urally occurring low-frequency radio noise. The statistical properties discussed 

include long-term noise averages, amplitude probability distributions, impulse in- 

terarrival time distributions, correlations between impulses, and background noise 

statistics. 

2.2    Long-Term Noise Averages 

The noise amplitude data described in Section 1.2.1 are collected continuously at 

the radiometer sites over long periods of time, and their absolute noise levels are 

well calibrated. It is thus possible to derive statistically significant seasonal and 

diurnal variations of ELF/VLF noise from them. Since the noise is primarily caused 

by lightning occurring throughout the world, these variations are related to seasonal 

weather patterns and global climate change [15]. This section provides an overview 

of the seasonal and diurnal variation calculations performed with the data; more 

extensive results are contained in [3, 4, 5]. 

To provide a basic context for the ELF/VLF noise amplitude measurements, 

Figure 2.1 shows the one hour average noise amplitudes over the course of one 

11 
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Figure 2.1: Noise averages in the 10 Hz frequency band recorded June 1994, at 
Arrival Heights, Antarctica. Each of the 720 points on this plot is an average of one 
hour of data. 

month for one channel, the 10 Hz band measured at Arrival Heights during the 

month of June 1994. Each of the 720 points on this graph, representing one hour, 

is an average of roughly 32,000 noise filter output samples (not 36,000 because of 

calibration periods). The data consist of both random and diurnal variations; they 

sometimes show occasional short duration impulses due to both man-made and 

natural interference as well. The entire database contains thousands of these plots, 

one for each station, month and channel. 

The unit fT/vHz is essentially the square root of power spectral density, ob- 

tained in this case by dividing the RMS filter amplitude output (in fT) by 0.707, 

the square root of the 0.5 Hz bandwidth for the 10 Hz channel filter. The data are 

presented in fT because the system detects magnetic field. The vertical electric field 

component and/or the power of the incoming signal may be obtained using 377 0 

as the impedance of free space, but this is an approximation (albeit usually a good 

one) that assumes the impinging electromagnetic waves are planar. To convert to 

electric field under this assumption, the relation B = -y/jI^E = E/c may be used to 

determine that 1 fT is equivalent to 0.300 ^V/m. If it is desired to relate magnetic 

field (or magnetic flux density) B to magnetic intensity H, the relation B = fj,0H 

can be used to find that 1 fT is equivalent to 7.958 x 10~4 fiA/m. 

2.2.1    Seasonal Variations 

Determining the seasonal variations of natural radio noise over the course of many 

years requires two steps: (i) monthly averages are computed for each station, month, 
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year, and frequency band (i.e., all the data in Figure 2.1 are averaged to come up 

with one number for June 1994 at Arrival Heights in the 10 Hz frequency band), 

and (ii) all the years are then averaged together, resulting in an overall variation by 

month at each station and in each band. 

Figures 2.2 and 2.3 show the monthly variations of the noise level for all channels 

at Stanford, California, and the error bars show the standard deviations from year 

to year, i.e., a small error bar indicates little variation from one year to the next for 

that month. Note that the error bars are largely unrelated to the standard deviation 

of individual noise samples, which can be quite large; they are also unrelated to the 

standard deviation of the total average, which is minute since each point on these 

plots is an average of millions of sample values. Note that each individual graph has 

its own scale. All 24 hours of each day are included; for seasonal variations using 

only specific diurnal time periods, refer to [3]. 

A strong annual variation with a peak in the northern hemisphere summer can 

be seen in most of the frequency channels at Stanford. Although not shown, it 

exists at S0ndrestr0m as well. Arrival Heights and Dunedin, however, have some 

variations with a peak in the northern hemisphere winter. The differences between 

annual variations among stations and from channel to channel can be attributed to 

different patterns in local and distant lightning, with the higher frequency variations 

being influenced more strongly by closer sources. The seasonal variation of global 

lightning is such that southern hemisphere locations are generally more active in 

the northern hemisphere winter and northern hemisphere locations are more active 

in the northern hemisphere summer [4, 19]. 

In Figure 2.3, for frequencies in the range 1 - 1.5 kHz, the error bars are too 

large relative to the data to extract a statistically significant seasonal variation. This 

band is within the range of the earth-ionosphere waveguide cutoff frequencies, where 

noise does not propagate far and the receiver predominantly picks up the fields from 

local sources. In addition, the 32 kHz band at Stanford is known to be contaminated 

by man-made noise, resulting in a weak variation with large error bars. 

At the other frequencies, however, a monthly variation strongly dominates the 

uncertainty of the error bars. Given the number of data points and years involved, 
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Figure 2.2: Monthly variation of ELF/VLF radio noise at Stanford, California, for 
the eight lowest-frequency channels. The years 1986 to 1993 are included. 
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Figure 2.3: Monthly variation of ELF/VLF radio noise at Stanford, California, for 
the eight highest-frequency channels. The years 1986 to 1993 are included. 
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this reflects a definite seasonal trend in source quantity (i.e. lightning flash rate) 

and/or location. It is shown in [4] that the seasonal variations seen in the data 

correlate strongly with estimates of global lightning flash rates. 

2.2.2    Diurnal Variations 

Figures 2.4 and 2.5 show diurnal variations of the noise level for January and July at 

Arrival Heights, Antarctica, for the eight lowest frequency channels. The error bars 

indicate the standard deviations from year to year, i.e., small error bars indicate little 

variation from one year to the next in the diurnal cycle of a particular month. Once 

again, the error bars are largely unrelated to the standard deviation of individual 

noise samples or to the standard deviation of the total average. 

Changes in average noise levels from year to year for each month are removed 

from the error bar calculations, since otherwise they would artificially enlarge the 

diurnal variation error bars. The normalization is performed in three parts: (i) for 

each month and year, a noise average for the entire month is computed to produce a 

single value, (ii) for each month, the resulting values from (i) for the different years 

are averaged together to give one total average reference value per month, and (iii) 

all the data are normalized (by subtracting the difference between the corresponding 

values from parts (i) and (ii)) such that differences in total monthly averages from 

year to year are removed, i.e., each total monthly average now equals that month's 

reference value. Thus the error bars are truly an indication of the variation of the 

diurnal cycle. In most cases the error bars are small compared to their respective 

data, indicating little variation of diurnal cycles from year to year. 

Arrival Heights (at 77.8° S latitude) sees roughly equal contributions from storms 

at all longitudes, especially at the lowest frequencies. The 10 Hz band thus exhibits 

a diurnal pattern in phase with the overall worldwide distribution, a broad peak 

from 14-22 UT, as clearly seen in Figure 2.4. From June to September, however, 

the peak shifts to roughly 22-00 UT, as seen in Figure 2.5. This indicates a strong 

contribution from North American storms during their peak season [15]. 

Although not shown, large diurnal variations are seen in most of the frequency 
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Figure 2.4: Diurnal variation of ELF/VLF radio noise at Arrival Heights, Antarctica, 
during the month of January for the eight lowest-frequency channels. The years 1985 
to 1994 are included. 
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Figure 2.5: Diurnal variation of ELF/VLF radio noise at Arrival Heights, Antarctica, 
during the month of July for the eight lowest-frequency channels. The years 1985 
to 1994 are included. 
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channels at most of the stations [5]. However, the phases of these diurnal variations 

can depend strongly on month, frequency, and especially station. Variation by 

station is primarily due to the diurnal signature of global lightning, for which it is 

known that lightning over North America peaks at roughly 00 UT, lightning over 

South America peaks at roughly 20 UT, lightning over Europe and Africa peaks at 

roughly 16 UT, and lightning over Southeast Asia peaks at roughly 08 UT [15, 19]. 

The differences in diurnal variations with respect to frequency can be attributed to 

different patterns in local and distant lightning, with the higher frequency variations 

being influenced more strongly by closer sources. 

2.3    Amplitude Probability Distributions 

The most measured and modeled statistic of low-frequency radio noise, next to 

absolute power level, is the first-order APD. This section gives an overview of APD 

characteristics; APD modeling is covered in Chapters 3 and 4. 

Since wideband time-series data generally contain significant man-made inter- 

ference, the noise APD is usually analyzed within a relatively narrow frequency 

range. In such narrowband analysis, the broadband time-series data are digitally 

downconverted (i.e., frequency translated) using various center frequencies, and low- 

pass filtered using various cutoff frequencies. Statistics are then derived from the 

resulting lowpass equivalent signals. 

A narrowband signal n(t) can be written 

n(t) = m(t) COS(2TTft) - nQ(t) sm(2nft), (2.1) 

where ni(t) is the inphase component, riQ(t) is the quadrature component, and / 

is the center frequency. The signals ni(t) and nQ(t) are then lowpass signals with 

bandwidth much smaller than /. The complex-analytic representation is written 

n(t) = A(t)e*2*ft+e®\ (2.2) 
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where the magnitude (or envelope) A(t) is 

A(t) = y/nftt) + nJ(t), (2.3) 

and the phase 0(i) is 

0(i) = arctan^. (2.4) 

Using this latter notation the signal n(t) can also be written 

n(t) = M[A(t)ej(2*ft+@(% (2.5) 

where 3?() indicates the real part of the argument. 

The noise envelope A(t) is a random process, and its first-order statistics at a 

given time are specified by its APD. The APD is defined as the probability that the 

noise envelope A takes on a value larger than some given value a: P(A > a). Other 

commonly used statistical definitions that characterize A(t) are (i) the cumulative 

distribution function (CDF), FA(a), which is one minus the APD, (ii) the probability 

density function (pdf), /A(a), which is the derivative of the CDF, and (iii) the 

voltage deviation Vd, defined as 101og(E[A2]/E2[A\), which serves as an indicator of 

the impulsiveness of the noise. The phase Q(t) of atmospheric noise has long been 

known to have a distribution that is uniform over the angles —w to IT [33]; several 

checks on the noise survey data provide additional evidence that this is true. 

Since low-frequency noise is thought of as Gaussian noise plus an impulsive noise 

component, its pdf looks like a bell curve but with heavier tails. Likewise, since 

the envelope distribution of Gaussian noise is Rayleigh, the envelope distribution 

of low-frequency noise appears Rayleigh but with a heavier tail. The difference 

between a typical low-frequency noise envelope pdf and the Rayleigh pdf is shown 

in Figure 2.6, for July 1986 data from Thule, Greenland, in the 35.6 - 37.6 kHz 

range. Noise envelope pdf's are found to decay with an inverse power law for large 

values (out to some limit set by the dynamic range of the system), so the Rayleigh 

pdf has a tail that rolls off too quickly to accurately represent the noise data pdf. 
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Figure 2.6: Thule envelope pdf compared to a Rayleigh distribution with the same 
initial slope. The data are normalized such that E[A] = 1. 

2.4    Impulse Interarrival Distributions 

Thousands of hours of ELF/VLF/LF data were analyzed to determine impulse 

interarrival distributions. In each case, a set of threshold values (and their negatives) 

were chosen such as in Figure 2.7, a plot of 52 seconds of ELF broadband time-series 

data. For each occurrence of an upward crossing of a given positive threshold value 

or a downward crossing of the respective negative threshold value, the following are 

noted: (i) time of occurrence of the threshold crossing, linearly extrapolated from 

the two samples between which the level is crossed, (ii) the maximum (or minimum) 

extent of the sferic, and (iii) the amount of time the noise remains above (or below) 

the threshold crossing (i.e., the duration, also linearly extrapolated from the two 

closest sample values). Crossings less than one millisecond apart are assumed to 

be from the same impulsive waveform and are ignored. For a given +/— threshold 

value, all positive and negative sferics are treated together, and the time differences 

are determined from one sferic to the next. The result is a set of impulse spacings, 

or interarrival times. 
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Figure 2.7: Stanford ELF broadband data, 01 April 1990, at 01:04 UT. Dotted lines 
are shown at ±5 and ±10 times the norm of the noise. 
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Figure 2.8: Impulse interarrival pdf for Arrival Heights, December 1995, for the 
25.5 - 27.5 kHz noise band, with the impulse detection threshold set at 20 times the 
norm of the noise. 
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The set of successive interarrival times Ti(k) form a discrete random process. 

The marginal pdf of Tj(k) is assumed not to depend on the index £, and so can be 

found from a histogram of the interarrival times of the data. For every data sample 

analyzed, the resulting interarrival time pdf fjjit) was found to be of the form of 

Figure 2.8; this figure shows /j/(0 for Arrival Heights December 1995 data in the 

25.5 - 27.5 kHz noise band, with the impulse threshold set at 20 times the norm of 

the noise. 

Since Figure 2.8 has a logarithmic ordinate axis, functions of the form ce~Xt 

appear as straight lines with slope —A and intercept log c. Thus an exponential pdf, 

indicative of a simple Poisson process, would appear as a straight line. In all the 

data and for all threshold values, an approximately straight line is found for times 

greater than roughly one second. For values of Tj between zero and one, however, the 

slope is more steeply downward curving. This implies clustering, since it indicates 

that many of the impulses are bunched together with short times between them. 

Section 4.4 shows that a clustering Poisson assumption predicts the behavior of the 

pdf fait) very well. 

2.5    Correlations Between Impulses 

Since the magnitude and direction of each sferic's threshold crossing is noted, it is 

possible to check for correlations between maximum amplitude levels of adjacent 

impulses and also between maximum amplitudes and interarrival times. In all the 

data samples examined and at a variety of threshold levels, however, no significant 

correlations were found in adjacent amplitude levels or between amplitudes and 

interarrival times, validating certain independence assumptions of the model to be 

proposed in Section 4.2.2. The correlation coefficient between adjacent interarrival 

times is roughly .15 - .20. 
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2.6 Background Noise Statistics 

As mentioned previously, it has long been held that atmospheric noise can be viewed 

as a superposition of Gaussian noise and distinct impulses [12, 17]. The Gaussian 

component is the background noise, which results from the superposition of numerous 

low-level sources, including distant sferics. The impulses are caused by lighting from 

relatively nearby thunderstorms. 

For narrowband noise with bandwidth B, the background noise samples are com- 

monly modeled as independent if they are spaced at the Nyquist rate 1/2B. This 

assumption about the noise survey data is tested by removing all the noise impulses 

that stand out above the background noise level and performing correlation statistics 

on the samples that are left (usually more than 95% of them). It is found that the 

resulting background noise is indeed well modeled as white Gaussian noise (WGN), 

albeit with the tails chopped off. This characteristic is used in the receiver design 

problem of Chapter 5. 

2.7 Conclusions 

This chapter sets the framework for the rest of the dissertation by introducing some 

of the statistical properties of low-frequency radio noise. These properties are used 

in the following chapters to derive both models of the noise and receiver structures 

for communicating in it. The primary results of this chapter are: 

• Seasonal and Diurnal variations correlate well with global lightning patterns 

and can be used to track global climate change. 

• The narrowband noise envelope pdf of low-frequency noise has the functional 

form of a Rayleigh pdf at low values of dynamic range but decays with an 

inverse power law for high values. 

• Impulse interarrival time distributions indicate clustering of sferics with bursts 

on the order of one second in length. 
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• No appreciable correlations are found between the maximum amplitudes of 

adjacent sferics or between these maximum amplitudes and interarrival times. 

• Low-frequency noise can be viewed as the superposition of white Gaussian 

noise and clustered noise impulses from sferics. 



Chapter 3 

Comparison of APD Models 

3.1    Introduction 

It is stated in Chapter 2 that one of the most commonly modeled statistics in 

atmospheric noise studies is the noise envelope APD, or equivalently the pdf. In 

this chapter, the first-order amplitude probability distributions of ELF/VLF/LF 

noise data are determined and compared to several noise models used in recent 

literature: the Hall model [23], the Field-Lewinstein (or F-L) model [12] and the 

a-stable model [40]. These were chosen over a number of other noise models because 

of their popularity, accuracy and relative simplicity. 

For a given data histogram, each model's parameters are adjusted to minimize 

the expected value of the log error squared between the histogram and the model's 

estimate of it. This log error metric, called the mean-square log error (MSLE), is 

defined as 

MSLE = |/(:r)(bg10^   dx, (3.1) 

where f(x) is the data pdf and f(x) is the model's estimate of it. Note that the 

expression (3.1) is similar to the relative entropy definition in information theory [6], 

except for squaring the term in parentheses. 

After optimizing the parameters of each model, the minimum errors achieved 

for the individual models are compared and the best model is determined.   The 

26 
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best model depends on geographic location, time of year and day, frequency, and 

bandwidth, but the Hall and a-stable models are found to give extremely good 

performance in general. Both models have Rayleigh characteristics for low amplitude 

values but decay with an inverse power law for high amplitude values. The results 

show that the Hall model is the optimal choice in terms of accuracy and simplicity 

for locations exposed to heavy sferic activity (e.g., low-latitude regions), and the 

a-stable model is best for locations relatively distant from heavy sferic activity 

(e.g., high-latitude regions). In addition, the commonly used voltage deviation (Vi) 

parameter is found to be only weakly related to the amount of sferic activity in the 

noise waveform. 

3.2    Amplitude pdf Models 

Extensive research has been conducted for over forty years in order to characterize 

and model the first-order APDs of atmospheric radio noise (e.g., [7, 33, 36, 47]). 

Some APD models are based entirely on intuitive reasoning and/or fitting the data 

to mathematical functions (these are called empirical models); others start with 

assumptions on noise source distributions and the propagation of noise impulses to 

the receiver (statistical-physical models). Empirical models in general have been 

based on crude curve fittings to limited data, but nonetheless a number of good 

models have been developed, including the Hall and Field-Lewinstein models. They 

are typically simpler and more mathematically tractable than other models, but 

their parameters are often unrelated to the physical processes that create the noise. 

Statistical-physical models take into account the underlying physical processes 

of impulsive noise, but usually are difficult to work with mathematically. Making 

them tractable often requires approximations that are known not to be true for 

atmospheric noise, such as assuming the impulsive sources are distributed indepen- 

dently and uniformly in space and time. Nonetheless, statistical-physical models 

prove useful in many applications. 

The most widely known statistical-physical models are the class A and B noise 

models developed by Middleton [33].   These are not considered explicitly in this 
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dissertation due to their complexity, but the class B model proves to be very accurate 

since it is a generalization of both the Hall and a-stable models. It should be noted 

that class A noise is denned for cases in which the bandwidth of the input noise is 

comparable to or less than the detection bandwidth, and class B noise is defined for 

cases where the noise bandwidth is greater than the bandwidth of the detector (i.e. 

impulsive noise inputs produce transients in the receiver). It is the latter case that 

applies in this study, especially at lower latitudes, since the sferics in the noise data 

have much wider bandwidths than those used to analyze the noise. 

The complete set of noise model distributions from which the Hall, a-stable 

and F-L were selected includes power-Rayleigh (or Weibull), Laplace, lognormal, 

hyperbolic, and any promising mixture processes or piecewise combinations of these, 

both with and without the Gaussian or Rayleigh distribution included as well. This 

encompasses most, if not all, of the commonly known APD models (e.g., [16,18, 34]). 

3.2.1 Hall Model 

The Hall Model is presented and explained extensively in [23], but only the first 

order pdf of the narrowband envelope A is needed here. The Hall model specifies 

this envelope pdf /4(a) as the two parameter distribution 

fA(a) = (m- i)7»-i_—£_., a > 0, (3.2) 
[a2 + 72J  2 

called the Hall pdf from this point on. The term 7 is a scaling factor and the term 

m determines the impulsiveness of the noise. Note that A has infinite variance for 

m < 3. 

3.2.2 Field-Lewinstein Model 

The Field-Lewinstein model is an empirical model developed from the assumption 

that atmospheric noise is composed of impulsive noise superimposed on a back- 

ground of low-level Gaussian noise. The envelope A is approximated as the sum of 
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a Rayleigh distributed random variable (for the Gaussian component) and a power- 

Rayleigh distributed random variable (for the impulsive component), so the envelope 

pdf is the convolution of the two densities: 

,2 ,<*-! 
/x(.) = |.-*. =£:.-<*>•,. >0. (3.3) 

Equation (3.3) is referred to as the F-L distribution from this point on. Note that 

it is a three parameter distribution with no closed form, so it is somewhat difficult 

to work with mathematically. 

3.2.3    Alpha-Stable Model 

The a-stable pdf is directly specified in the characteristic function domain. The 

characteristic function $x{w) of a random variable X is essentially a Fourier trans- 

form of the pdf: 

$xH = E[e>"x] = r fx{x)ei«xdx, 
J—oo 

and the a-stable characteristic function is defined as 

a two parameter distribution. The general form of the distribution includes two 

more parameters, defining an absolute shift and a skew, but these may be eliminated 

by assuming the noise is distributed symmetrically about zero. (This the case for 

atmospheric noise time-series data). 

For a = 2 the characteristic function defines a Gaussian distribution with mean 

zero and variance 2j; for a = 1 it defines a Cauchy distribution with parameter 7. 

Thus the Cauchy and Gaussian distributions are forms of the a-stable distribution. 

For a close to two the distribution is essentially Gaussian but with heavier tails. 

The a-stable distribution for 7 = 1 and various values of a is shown for positive 

values in Figure 3.1. A significant difference in tail rolloff is seen even for a = 1.95 

as compared to the Gaussian case, a = 2.0. 
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Figure 3.1: The a-stable pdf for a = 1.0 (Cauchy), 1.6, 1.95 and 2.0 (Gaussian), 
and 7 = 1.0; only positive abscissa values are shown. 

If narrowband atmospheric noise is a-stable distributed, the inphase and quadra- 

ture components are jointly a-stable with characteristic function 

QxxjJw) = E[ej^Xl+"2X^} = e~^a, (3.4) 

where u = (u^,^)- The corresponding envelope distribution is the Fourier-Bessel 

transform of e-7'>a: 

f°° a 
/yi(a) = a       pe~'ip J0(ap)dp,a > 0. 

./o 
(3.5) 

Note for a = 2 that this is the Rayleigh distribution. For a close to two it is 

essentially a Rayleigh distribution but with a heavier tail. From this point on, the 

/A(a) of (3.5) will be referred to as the a-stable envelope pdf. 

The a-stable pdf does not exist in closed form except for a = 1 or a = 2, but it 

can be approximated numerically without a great deal of computational complexity. 
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In addition, the parameter 7 is a simple scaling factor such that 

fx(x;a,j) = —/*(—; a, 1), 

and likewise for the envelope pdf 

fA{a\a,i) = —/4—;<*,1), 

so a lookup table must vary only over the one parameter a.  Such a lookup table 

method is used in these analyses. 

The o-stable model is an empirical model, but like the Hall model it does have 

some physical justification. Nikias and Shao [37] show that under certain assump- 

tions on the underlying noise sources and the propagation characteristics between 

them and the receiver, atmospheric noise is expected to exhibit an a-stable pdf. 

These assumptions, such as defining sources to be independently distributed in space 

and time, are not true in practice; however, they are approached closely enough in 

some cases to explain the accuracy of the a-stable model. 

3.3    Determining APDs of the data 

For data analysis, the underlying probability distribution fA (a) of the noise envelope 

must be derived from the data, so it is assumed that the desired ensemble statistics 

can be determined using corresponding time averages (for time intervals of interest). 

The data consist of one minute segments spaced one hour apart, however, and it is 

known that the noise is not stationary because the mean and RMS values have a 

diurnal and seasonal variation. To compensate for the shift in absolute amplitude 

levels between one minute segments, a normalization is performed on each segment 

such that the norm of A equals one, i.e., E[\A\] = E[A] — 1. 

A normalization in amplitude is used rather than the more common normaliza- 

tion in power, E[A2] = 1, because of the large effect a few outliers (large impulsive 

values) can have on the second moment. When normalizing to the second moment, 
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just a few large sferics in one sample compared to another can shift the distribu- 

tions with respect to each other even though their statistics are otherwise similar. 

When using normalization in amplitude, however, data taken over the course of 

hours and/or days have histograms that match closely. 

Once all the one minute samples are normalized, they are combined into a his- 

togram with 81 bins spaced logarithmically from 0.01 to 100, or -40 dB to 40 dB 

in power relative to A — 1. This dynamic range is found to include virtually every 

data point and is consistent with the range used for previously published data. 

3.4    Data Analysis 

This section presents the general results found when fitting all three models to all of 

the data, followed by specific results for each measurement location. This is followed 

by a discussion of each of the models, noting the range of parameters each model 

uses in fitting the data and how these parameters vary with season, time of day, and 

station. Finally, the results are compared with the voltage deviation parameter Vd. 

Because of the difficulty of finding noise samples that are completely free of man- 

made interference and the extensive processing time required to manipulate even the 

uncontaminated data, only a small subset of the noise survey database is analyzed. 

Nonetheless, the resulting data set consists of 35 gigabytes and spans various times 

of the year and all times of the day at seven of the stations. Space limitations 

preclude the presentation of the thousands of graphs and model parameter values 

resulting from the analysis; instead the qualitative features of the data are discussed 

and some numerical results are provided as proof. 

The data clearly reveal a pattern defining which model works best under which 

conditions, and the findings are as follows: the Hall model is found to be very 

accurate in modeling the amplitude pdf of VLF radio noise under the condition 

of heavy sferic activity in the noise, otherwise the a-stable model is optimal. In 

addition, there is a fairly large transition region (as a function of time, location, 

frequency, etc.) where both models are equally accurate. The F-L model exhibits 

an error metric roughly 10 to 100 times higher than the other two for most of the 
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data samples examined, but it is still reasonably accurate. 

As mentioned in Chapter 1, heavy sferic activity means that the noise contains 

numerous sferic impulses, as in Figure 1.3. This condition is met in general at 

the low-latitude sites compared to the high-latitude sites, as seen in the differences 

between the time-series data from Grafton, Dunedin, Stanford, Kochi and L'Aquila 

and the data from Arrival Heights, S0ndrestr0m and Thule. The higher latitude 

sites are far from the main sources of sferics (the tropical regions) so only larger 

sferics reach these locations. As viewed from a high-latitude receiver, then, sferics 

appear to be more sporadic. 

It is stated in Section 2.2 that sferic activity at a given location has both a 

seasonal and a diurnal cycle. Seasonal variations peak during the local summer, and 

diurnal variations peak in the local afternoon. Since the optimal model depends on 

sferic activity, it is thus related to season and time of day. 

The sferics themselves have a frequency response (as seen at the receiver) that 

peaks in the 8-14 kHz range and decreases with increasing frequency; therefore, 

only the stronger sferics create large impulses at the higher VLF frequencies (as seen 

in spectrograms similar to Figures 1.2 and 1.3). Because of this frequency response, 

narrowband time-series data appear to contain lower sferic activity as the center 

frequency is increased. 

The bandwidth of the receiver is known to affect the impulsiveness of the noise 

because a narrow bandwidth spreads the sferics in time, causing them to overlap 

more and appear less impulsive (this typically lowers the Vd as well). Thus the 

a-stable model exhibits a larger error than the Hall at low bandwidths since the 

impulses are less distinctive against the background noise, but this is true only for 

very small bandwidths. 

The following section presents specific results related to the above discussion, 

but it must be noted again that the analysis is known only to apply to atmospheric 

noise. Since auroral hiss has the characteristics of thermal noise, it is likely that the 

a-stable distribution with öRJ2 would model it accurately, but this hypothesis is 

not confirmed. 
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3.4.1    Results by Station 

The Arrival Heights VLF data are taken from the time period May 1995 through 

June 1996; the center frequencies analyzed span the range 17 - 27.5 kHz and the 

noise bandwidth is chosen to be 600 Hz (in order to reject adjacent man-made 

signals).  A fairly wide uncontaminated band from 25.5 - 27.5 kHz is analyzed as 

well.  It is found that the a-stable model performs optimally over the whole data 

set, with an average MSLE of 0.0008, compared to 0.006 for the Hall and 0.0153 

for the F-L. This means that on average the a-stable model is roughly within 7% 
(10Vo.ooo8) of the true pdfj compared to 19% for the Hall and 33% for the F_L. The 

a-stable model's accuracy is especially good above 20 kHz, where the respective 

average errors are 5%, 22% and 29%. 

The Dunedin VLF data cover the year 1989; the center frequencies analyzed 

span the range 15 - 27 kHz and the noise bandwidth is 400 Hz. The band 25 - 

27 kHz is analyzed as well. It is found that the Hall model performs best below 

approximately 23 kHz; above this range the a-stable model is slightly better. The 

respective percentage errors for the a-stable, Hall and F-L pdf's are 14%, 10% and 

33% for frequencies below 23 kHz, and 8%, 10% and 31% for those above. 

The Thule data include June 1986 to February 1987, with center frequencies 

ranging from 15-43 kHz (LF data were collected at Thule). The bandwidth for 23 

kHz and below is 400 Hz; at the higher frequencies tested it is 2 kHz. It is found that 

the Hall and a-stable models are comparable below 23 kHz except during the peak of 

the seasonal and diurnal cycles, when the Hall model exhibits 1/2 to 1/3 the MSLE 

of the a-stable model. The respective average percentage errors for the a-stable, 

Hall and F-L models below 22 kHz are 12%, 10% and 34%; at higher frequencies 

those errors are 6%, 15% and 35%. Even at higher frequencies the seasonal and 

diurnal variations have an effect: at 36 kHz the a-stable error varies roughly from 

5% to 11% seasonally and from 9% to 15% diurnally (during the seasonal peak). 

The S0ndrestr0m data include September 1993 to June 1994, with frequencies 

from 17 - 26 kHz and bandwidths of 600 Hz. The accuracy of the models follows the 

same diurnal, seasonal and frequency patterns as at the stations discussed above; 

sample results for S0ndrestr0m are shown in Figure 3.2.   The three rows of this 
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Figure 3.2:  Errors of the Hall (dashed line) and a-stable (solid line) models as a 
function of frequency and season at S0ndrestr0m. 
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figure correspond to center frequencies of 17.350, 22.550 and 26.500 kHz, and the 

four columns cover four consecutive seasons from September 1993 to June 1994. 

The plots are of the average percentage error as calculated using \0^MSLE- the Hall 

error is depicted by the dashed line and the a-stable error by the solid one. 

Note that the a-stable model has considerably less error than the Hall for the 

months of December and March, when the northern hemisphere seasonal variation 

is at a minimum. However, in June and September (near the peak of storm season) 

and at 17 kHz, the Hall model gives better performance. In addition, there is a 

diurnal variation of the a-stable error in September and June, when it increases 

with the passing of North American storms at approximately 00 UT. 

The Grafton, Stanford and L'Aquila data cover the same general frequency and 

time ranges as the data presented above, with the same results. Grafton is espe- 

cially close to heavy storm activity in North America, which typically occurs in the 

northern hemisphere summer, so the accuracy of the a-stable model is noticeably 

worse during these months. This is depicted in Figure 3.3, which shows the average 

percentage errors (averaged over all frequencies) of the three models as a function 

of time of day for the months of January 1988 and July 1988. The a-stable model is 

clearly the best in January, but in July its performance degrades to a greater error 

than the Hall model. 

Bandwidth Effects Thule data at center frequencies of 36.6 kHz and 43.4 kHz 

and with bandwidths of 25, 50, 100, 200, 400, 800 and 1600 Hz were processed in 

order to test the effect of increasing bandwidth. The Hall model exhibits a larger 

MSLE and the a-stable model a smaller one as bandwidth increases, but the effect 

is only seen during increased storm activity, and the maximum error of either model 

is only approximately 13%. 

An additional sample of Arrival Heights May 1995 data was processed with a 

center frequency of 8 kHz and bandwidth varying from 25 Hz to 1600 Hz. In this case 

the a-stable model is only 7.5 percent in error across the whole range of bandwidths, 

while the Hall error increases from 9.5 to 21 percent with increasing bandwidth. The 

F-L error varies between 40 and 60 percent. 
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Figure 3.3: Errors of the Hall, Field-Lewinstein and a-stable models as a function 
of frequency and season at Grafton, New Hampshire. 
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Model Parameters MSdBE % error 

Hall 
m = 5.23 
7 = 1.348 

0.0075 22% 

F-L 
a = 0.58 
r0 = 0.77 
r = 0.18 

0.0132 30% 

a-stable 
a = 1.844 
7 = 0.293 

0.000038 1.4% 

Table 3.1: Parameter values for the Hall, Field-Lewinstein and a-stable models in 
Figure 3.4. 

Model Parameters MSdBE % error 

Hall 
m = 3.05 
7 = 0.665 

0.000088 2.2% 

F-L 
a = 0.59 
r0 = 0.40 
r = 0.40 

0.0219 41% 

a-stable 
a = 1.38 
7 = 0.276 

0.0011 8% 

Table 3.2: Parameter values for the Hall, Field-Lewinstein and a-stable models in 
Figure 3.5. 

3.4.2    Parameters of the Models 

This section discusses how well each model fits various portions of the dynamic range 

of the noise envelope. This information is not contained in the MSLE since it is an 

average over the entire dynamic range; therefore, this section provides additional 

insight as to why a model may perform well or poorly. In addition, it is stated 

for each model the range of parameters exhibited in fitting the data histograms, 

and whether or not these parameters are correlated with location, center frequency, 

bandwidth, time of day or season of the year. 

Figure 3.4 shows the fit of the three models (both APD and pdf) using a typical 

data sample for which the a-stable model is optimal; the data and a-stable plots 

virtually coincide. The data are from Arrival Heights during the 04 - 08 UT diurnal 

time period in May, a time and month of relatively low sferic activity. The center 
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of Arrival Heights data. 
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frequency is 22.7 kHz and the bandwidth is 600 Hz. Parameters and errors for the 

three models are given in Table 3.1. 

The envelope pdf of Figure 3.4 is essentially Rayleigh except for a heavy tail due 

to occasional sferics, starting at 10 dB in the dynamic range. The Hall and F-L 

models fit the curve accurately in the high probability -10 to 10 dB range, but are 

unable to accurately model the higher range. In fact, they are often off by orders of 

magnitude. 

Figure 3.5 shows the fit (both APD and pdf) for data typical of when the Hall 

model is optimal. The data are from Grafton, in March, and contain heavy sferic 

activity. The center frequency is 17.5 kHz and the bandwidth is 400 Hz. Parameters 

and errors for the three models are given in Table 3.2. 

The value of m for the Hall model and the value of a for the a-stable model are 

significantly less in Table 3.2 than in Table 3.1. The average amplitude is higher 

relative to the background noise, and so more of the probability occurs at dB values 

less than zero. In addition, the data curve has no convex bend at 10 dB as in 

Figure 3.4, making the Hall pdf an almost perfect fit. The upward curve of the 

a-stable pdf near 40 dB in Figure 3.5 is due to limits of numerical accuracy for the 

algorithm used to determine the pdf. 

3.4.3    Error Across Dynamic Range 

The errors across dynamic range in Figures 3.4 and 3.5 are shown in Figure 3.6. A 

value of one on the y-axis corresponds to an order of magnitude in error, so it is seen 

that the Hall and F-L models give an estimate that is several orders of magnitude 

too low for the high end of the dynamic range in the Arrival Heights data. The F-L 

model gives too low an estimate at low levels as well. 

For very small a, the F-L model has functional form aa+1, since it is the convo- 

lution of a with aa_1 (ignoring constants). This is clearly seen in Figures 3.4(a) and 

3.5(a), where the slope of the F-L curves at low values is roughly 0.8 dB/dB. Since 

the abscissa is in dB power, this is equivalent to 1.6 dB/dB in amplitude, which is 

almost exactly the value of 1 + a. The other curves (including the data) have a slope 
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the data of Figures 3.4 and 3.5. 
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of 0.5 dB/dB power, or 1.0 dB /dB amplitude, indicating a Rayleigh pdf for small a. 

At the high end of the dynamic range, the F-L model decreases power-exponentially 

as a —y oo, which is too rapid of a decay. The polynomial decay exhibited by the 

other two models is more accurate. 

3.4.4 Typical Parameter Values 

Typical values of the F-L parameters are as follows: a is usually in the range 0.5 

to 0.6, although values as low as 0.34 and as high as 1.15 are found. The values 

of r0 and r both range from 0.1 to 1.0, but typically take values of 0.7 and 0.25, 

respectively. There is only a mild dependence of the three parameters on season 

and time of day at the high-latitude sites, but at lower latitudes there is a large 

dependence. At Grafton, for example, the value of a jumps from 0.5 in January to 

0.9 in June, and there is an additional 0.2 diurnal variation about these values as 

well. The term r0 correspondingly drops from 0.8 to 0.2, and r increases from 0.2 

to 0.8, from January to June. 

The Hall model has values of m that range from 2.2 to 11, with typical values 

between 3 and 4. Values of 7 range from 0.6 to 2.4 and are typically 1 to 1.5. There 

is no strong relationship between the Hall parameters and time, location, etc., but 

the values of m and 7 do tend to rise as the center frequency is increased throughout 

the 15 - 27 kHz range. 

The a-stable model has values of 7 that are mostly near 0.3. The value of a 

is usually between 1.6 and 2.0, but can be as low as 1.1. A seasonal and diurnal 

dependence is seen in a, but it is strong only at the low-latitude sites. 

3.4.5 ELF Results 

The ELF data are severely contaminated by power line harmonics spaced either 

50 Hz or 60 Hz apart, and the need for total rejection of these signals allows only 

for very narrow analysis bandwidths. (The need for total rejection of power line 

harmonics is demonstrated by the fact that even small leakage causes a significant 

drop in V^).   Fortunately, several data samples were found for which the 240 Hz 



CHAPTER 3.   COMPARISON OF APD MODELS 44 

harmonic did not exist at all for an entire month, so the usable bandwidth spanned 

the range 180 - 300 Hz. These data samples are Arrival Heights for September 

1994, and Thule and S0ndrestr0m for April 1990. They are analyzed using a center 

frequency of 240 Hz and bandwidths ranging over the values 5, 10, 15, 20, 25 and 

30 Hz. 

The ELF results do not differ significantly from the VLF results either qualita- 

tively or quantitatively. The average percentage errors of the a-stable, Hall and F-L 

models at Arrival Heights are 4%, 12% and 36%, respectively; at S0ndrestr0m they 

are 9%, 6% and 42% respectively; at Thule they are 8%, 7% and 37%. These num- 

bers are averaged across bandwidth; at the larger bandwidths the a-stable model 

always outperforms the Hall. The parameter ranges of the models are the same as 

described above for VLF. 

3.5    Voltage Deviation 

The Vd statistic is reintroduced at this point because it is a fundamental concept 

in previous work on modeling atmospheric noise [26, 42]. It is computed as Vd = 

101og(E[A2}/ E2[A]), and as such it is the RMS value of the noise envelope divided 

by the average value, in dB. Vd is a measure of the spikiness of the noise (since 

sharper impulses result in a higher RMS value relative to the mean value) and is 

greatly dependent on the noise bandwidth; however, it is not necessarily an indicator 

of heavy sferic activity. For the data of Figure 3.4, the Vd is 3.48 dB, and for the 

data of Figure 3.5, it is 4.91 dB, but there are many cases where the a-stable model 

is optimal for higher Vj's as well. (It should be noted that the ability to compute 

10log(E[A2]/ E2[A\) from the data is based on system dynamic range limitations, 

since Vd is undefined for many parameter values of the Hall and a-stable models). 

Seasonal and diurnal variations of Vd are seen in the data, but they cannot be 

systematically correlated with known storm distributions. For instance, Vd does not 

necessarily rise and fall with storm season: at Grafton (for one sample frequency 

band) it reaches a low of 2.5 dB in both January and July, from approximately 4.5 

dB in spring and fall. Other data show that Grafton's Vd varies out of phase with its 
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diurnal variation, while Dunedin's Vd variation is in phase with its diurnal variation. 

The typical range of Vd values is 1.5 dB to 6.0 dB, although values as high as 10 dB 

can be seen at high-latitude sites. 

Vd is also found to relate somewhat to the parameters of the three pdf models. 

For one set of Arrival Heights data samples, the Hall parameters m and 7 decrease 

from 10 to 2.8 and 2.0 to 0.4, respectively, as Vd increases from 1.5 to 9.0. The F-L 

parameters a, r0 and r change from 0.7 to 0.4, 1.0 to 0.4, and 0.1 to 0.2, respectively, 

as Vd increases, and the a-stable parameters a and 7 decrease from « 2.0 to 1.2 and 

0.3 to 0.2, respectively. The errors of the three models have fairly little relation to 

Vd, except that the Hall model tends to be more accurate than the a-stable model for 

lower values of m, which corresponds to higher values of Vd- This is not universally 

true, though, since as mentioned previously it is possible to have a high Vd for noise 

of relatively low sferic activity. 

3.6    Conclusions 

This chapter presents many APD results derived from a statistical analysis of low- 

frequency radio noise. Three models for the noise envelope APD are described, and 

the parameters and accuracy of each model are determined as a function of location, 

time and frequency. The parameters and errors of each model are found to vary with 

thunderstorm activity, and the noise frequency and bandwidth. 

The main conclusion of this chapter is that the Hall model is the optimal model 

in terms of accuracy and simplicity for locations exposed to heavy sferic activity, and 

the a-stable model is best for locations relatively distant from heavy sferic activity. 

A general rule based on the results would be to use the a-stable pdf in high-latitude 

regions except at the peak of the diurnal and seasonal storm cycle, and to use the 

Hall model at low- and mid-latitudes except at the null of the seasonal and diurnal 

cycle. The crossover point is not critical; there are a broad range of conditions where 

both models have roughly the same accuracy. 



Chapter 4 

Clustering Poisson Model 

4.1    Introduction 

This chapter presents a statistical-physical radio noise model, denoted the "cluster- 

ing Poisson" model, and shows that this model predicts several important statistical 

features of atmospheric radio noise very accurately. The model is derived in con- 

junction with the statistical results of Chapters 2 and 3, and so it is supported by 

a multitude of real data. The term "clustering Poisson" is used to describe the 

model because noise source events occur as Poisson processes that are triggered by 

another, independent Poisson process, and thus the noise impulses are seen to occur 

in bursts, or clusters. 

A number of statistical-physical noise models (i.e., based on the underlying 

physical process that creates the noise) have been developed over the past four 

decades; each can be roughly categorized into one of two types: (i) simple enough 

to provide concise, closed form answers but only somewhat representative of the 

true physical situation, and (ii) representative of the true physical situation but 

very complicated to use. The second type often uses specific storm distribution and 

propagation information and calculates the noise characteristics at a given point 

numerically (e.g., Warber and Field [46]), whereas the first type usually assumes 

independence in space and time of the source distribution (a condition known not 

to be true in practice). The new model partially bridges the gap between the two 

46 
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types by replacing independence in time with a clustering Poisson assumption. 

The model is verified by comparing it to four statistical features of atmospheric 

radio noise: impulse interarrival distributions, correlations between impulses, APDs, 

and power spectral densities. The impulse interarrival time distributions predicted 

by the model are shown to match those seen in the data, thus verifying the accuracy 

of the clustering Poisson assumption. Furthermore, the noise amplitude probability 

density function predicted by the clustering Poisson model, the a-stable envelope 

pdf, is shown in Chapter 3 to accurately fit histograms of real data for locations 

relatively distant from storm activity. Finally, clustering of pulses is shown to have 

little effect on the power spectral density of the noise, a fact also seen in the data. 

Given the accuracy to which the predicted statistical features fit the actual data, it 

is concluded that the clustering Poisson model is a good candidate as a model for 

atmospheric noise. 

Section 4.2 discusses several existing models for atmospheric noise and presents 

the new clustering Poisson model, then Section 4.3 shows that this model predicts 

the noise envelope pdf to be an a-stable distribution. Section 4.4 derives the pre- 

dicted impulse interarrival distributions, and Section 4.5 discusses power spectral 

densities. Finally, the results are summarized in Section 4.6. 

4.2    Review of Existing Models 

Most impulsive noise models do not take impulse interarrival time dependencies into 

account, but two statistical-physical models that do address impulse clustering are 

those of Furutsu and Ishida [16] and Giordano and Haber [18]. Furutsu and Ishida 

address only the clustering of pilots and leaders (on the order of milliseconds) in 

an individual lightning stroke, however, and the analysis does not provide concise 

results. Giordano and Haber model impulse clustering by assuming that with each 

independent impulse there is a finite probability of a similar dependent impulse a time 

Ti later, where r; is an appropriately specified random variable. The analysis is not 

extended to multiple dependent impulses due to the added mathematical complexity. 

Both models provide several key features upon which the new model is based, such 
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as specification of the source distribution and propagation characteristics. 

Nikias and Shao [37] use an adapted form of Giordano's model (without impulse 

clustering), in addition to a method in Zolotarev [48] for the model of point sources of 

influence, to prove that atmospheric noise has an a-stable distribution. Since some 

of the results in the following sections use this proof, the notation in describing both 

the non-clustering model and the new clustering model largely follows that in [37]. 

4.2.1    A Non-Clustering Statistical-Physical Poisson Model 

This section defines a non-clustering statistical-physical Poisson model that is com- 

mon in principle to several described in the literature [18]. Begin by assuming that 

the received noise is the superposition of many impulses produced by many sources 

in a region encompassing the receiver location. Given this assumption, if the exact 

source distribution were known, as well as the exact time that each source emits an 

impulse and the exact waveform of each impulse at the receiver (including knowl- 

edge of time delay), the characteristics of the received noise waveform could be 

completely determined. The problem, of course, is that it could only be determined 

numerically and would not in general yield simple, closed form results. In order 

to proceed to such results, exact knowledge of the source characteristics must be 

replaced with simplified statistical approximations and expectations. 

The region fi encompassing the receiver location is defined on Rn, where n € 

{1,2,3} is the dimension of the space (i.e., a line (R1), a plane (R2), or a volume 

(R3)). The receiver is at the origin and each source i is at a position x,- a distance 

|XJ| from the receiver. It is assumed that all sources have similar enough waveform 

generation mechanisms that their emitted waveforms may be modeled as a{D(t; 0j), 

where the random amplitudes a; are independent and identically distributed (i.i.d.) 

with pdf fa(a) (denoted i.i.d. ~ /a(a)) and the random parameters #,- are i.i.d. ~ 

/©(#). The 6i represent arbitrary mappings from a probability space to an ensemble 

of possible waveforms; they are chosen to be scalars for simplicity. 

The effect of the transmission medium is modeled as the combination of a power 

law attenuation factor v and a linear, time-invariant (LTI) filtering factor h(8) such 
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that the impulse a,iD(t; 0;) appears as ai^D(t; 0;) * h(9{) at the receiver, where ca 

is a positive constant and v > 0. Since 0, is arbitrary, the convolution D(t; 6i)*h(9i) 

may be defined as E(t; 0,-) without loss of generality. Further defining the quantity 

U{t)xi,$i) = ^U;E(t;ei) (4.1) 
lx*l 

and letting the random variable N be the number of contributing impulses at the 

time of observation, the received waveform Y is then 

N 

Y = YlaiU(ti;xi,9i). (4.2) 
»=i 

The time U > 0 is defined as the difference between the observation time t — 0 and 

the source emission time, so it is larger for older impulses (i.e., t is a measure of 

negative time). 

It now remains to specify N. In order to attain the most tractable results while 

maintaining a reasonably accurate physical representation, N is assumed to be the 

number of events generated by a Poisson process in space and time with source 

density function /£>(x,i). The value p(x,t)dxdt is then the probability that a noise 

impulse will be emitted from the (infinitely small) region defined by the line, square 

or cube (for n = 1,2,3) with far corners x and x + dx, and during the (infinitely 

small) interval [t,t + dt] prior to observation. The term p(x,t) may take a general 

form over x£fi and t G [0, oo), but for simplicity it is approximated as 

'fr *)*]§: (4-3) 
where po,p > 0 are constants. Thus the sources are defined to be independent both 

in time and direction from the receiver. The exponent fj, defines a variation in source 

density with distance, providing an added degree of freedom with minimal added 

complexity. 

The definition of p(x, t) in Eq. (4.3) is the key approximation for making further 

analyses reasonably simple and tractable, but it is not the true physical source 
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distribution of atmospheric radio noise. Various storm centers are active at various 

times of day and year [4, 5, 19], so for a given receiver location there are certain 

directions from which heavier sferic activity arrives than others. This directional 

dependence contradicts the source distribution of Eq. (4.3), but nonetheless Eq. (4.3) 

is often reasonably accurate. 

The temporal independence approximation, however, is not reasonably accurate. 

Bursts of sferics on the order of one second in length are clearly seen in spectrograms 

of ELF/VLF/LF time-series data at all locations and times (see Figure 1.2), and they 

have considerable effect on the time-series data. The model presented below adds 

impulse clustering properties to the model just described in a way that accurately 

represents this clustering of sferics. 

4.2.2    Definition of the Clustering Poisson Model 

Instead of specifying the received waveform Y to be the superposition of impulses 

distributed throughout the region, specify it to be the superposition of clusters 

distributed throughout the region, where a cluster is defined as a burst of impulses 

from a given location over a short time period. (Clusters will be specified in detail 

in the next two sections). The resulting waveform at the receiver is then 

^ = £ ** = E E *k,iU{TKi- xk, OK), (4.4) 

where iVc is the number of clusters, Nk is the number of impulses in cluster k, and 

the indices k, i on a, T and 9 refer to the ith impulse of the fcth cluster (i = 0 

refers to the impulse that starts the cluster). All the impulses in cluster k are 

modeled as occurring at the same location x^. The a,k,i and 9k,i are all independent, 

an assumption verified by the lack of correlations between impulses discussed in 

Section 2.5. Every cluster is assumed to be independent of every other in both 

space and time. The Xk's are the waveforms of the individual clusters. 
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4.2.3    Specification of Clusters 

The number of clusters iVc is analogous to N in Eq. (4.2) and the clusters have 

the source density of Eq. (4.3), but the statistical properties of the clusters them- 

selves still need to be specified. The specification chosen must accurately model the 

physical mechanism of lightning and should also lead to tractable results. 

In order to develop a physically accurate model, several features of lightning must 

be considered. From Uman's classic text Lightning [44], it is known that a complete 

cloud to ground discharge, called a flash, is made up of one or more intermittent, 

partial discharges, called strokes. Each stroke involves a complex process whereby 

either a stepped leader or a dart leader initiates a strong return stroke, transferring 

large amounts of charge between the earth and its atmosphere. A significant per- 

centage of flashes contain many strokes; one data sample in [44] indicates that 40 

percent of all flashes contain at least five strokes and some contain as many as 19. 

In addition, 50 percent of those flashes with five or more strokes have a duration of 

more than 400 milliseconds. Data histograms in [44] and [46] showing typical flash 

per stroke distributions indicate that the number of flashes per stroke can be rea- 

sonably modeled as a geometric random variable; thus the number of impulses per 

cluster in the clustering Poisson model is defined to be a geometric random variable 

as well. 

Now the timing of impulses within a cluster must be specified. Every cluster 

has at least one impulse, which is the start of the cluster. The interarrival times 

Ti between any additional impulses in a given cluster are specified as i.i.d. random 

variables with pdf 

Mt) = Aie"Alt, t > 0, (4.5) 

i.e., an exponential distribution (denoted EXP(Ai)). Each cluster then is essen- 

tially a variable length Poisson process with rate Ai impulses per second, and as 

stated above, all the clusters are independent of the main process and of each other. 

Similar cluster specifications have found use in modeling computer failures [29], 

earthquakes [45], and neural impulses [21]. 
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4.2.4    Length of Clusters 

This section specifies the probability mass function (pmf) of the iVJt's and determines 

the pdf of the cluster lengths Tr,k. The Nk's are modeled as i.i.d. geometric random 

variables with pmf 

^ = ") = Ä^ÄI(OT)". « = 04,2,3..., (4.6) 

where the index k is omitted since this pdf applies for all k. The parameter XL is 

now shown to be the reciprocal of the expected cluster length. 

If JV = 0, there are no impulses after the first impulse and the cluster length is 

zero. For a given N > 0, the length TL of the cluster is the sum of N independent 

EXP(Ai) random variables, and therefore it is known to have the Erlang density 

/W*,n)=     \n_1)]       • (4-7) 

Thus the pdf frL{t) for i > 0 can be determined by conditioning on N: 

(4.8) 

[tt){tt)^t^ <") n=0 

It 

where (4.10) is obtained using the exponential summation formula. Note that the 

rest of the probability on TL is at the point P(TL = 0) = XL/{Xi + A^). 

Since Ai/(Ai + Ax,) is the probability that N > 0, it is apparent from Eq. (4.10) 

that frL\N>o is EXP(A1Ax,/(A1 + XL)) distributed. In addition, since the expected 

value of an EXP(A) random variable is 1/A, it follows from (4.10) that 
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An equivalent cluster specification results by defining clusters to be Poisson 

processes of random length T^, where T^ is EXP(A,£,). In other words, it is equivalent 

to define (i) the iV^'s as geometric random variables, so that the cluster length TL 

given Nk is Erlang distributed as in (4.7), or (ii) the length T^ of a rate Ai Poisson 

process such that Nk\T^ is a Poisson(A1Tj/) random variable. With definition (ii), 

the pmf of Nk is 

P(Nk = n)   =    [°°\Le-^t{Xlt)n*~Xli dt (4.12) 
Jo nl 

/*oo 

/   (Ai<)ne-(Al+Ai>*<ft (4.13) 
Jo 

n = 0,1,2,3..., (4.14) 

n! 
AL     /    Ai 

Ai + AL \Xi + Ax,, 

where the integral in (4.13) is solved using item (860.07) in Dwight [9]. Since 

(4.14) and (4.6) are identical and the interarrival specifications are the same as well, 

definitions (i) and (ii) are equivalent. The variable T^, however, is not the length of 

the cluster; it is simply the length of an underlying Poisson process. The variable TL 

(which is less than or equal to T^) is the true length of the cluster, for it indicates 

the location of the last impulse. Definition (ii) is introduced because it simplifies 

the proof in the next section. 

4.3    Probability Density Function of Clustered Pois- 

son Noise 

Now that the clustering Poisson model is specified, it remains to demonstrate its 

validity in the modeling of real data. This section presents a proof that the first 

order pdf of the received noise Y defined by the clustering model of Eq. (4.4) is an 

a-stable distribution. 

Let the receiver's response due to a single cluster Xk starting at time tk before 
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zero (zero is the observation time) and at location Xjt be 

Nk 

Xk = ak,oU(tk; xjb, 9k,o) + X] ak^U(Tk,i; x*, 0k,i), (4.15) 

where the first term of (4.15) is the impulse at tk, the cluster starting time. Since 

the clusters are i.i.d., the index k is redundant when specifying any one cluster; thus 

the notation 
N 

X = a0U(t; x, $o) + £ a,-J7(rf; x, 0,-) (4.16) 
2 = 1 

is used from this point on, where i = 0,..., N remains the index for impulses within 

a cluster. (In Eqs. (4.15) and (4.16), the i = 0 term is separated out from the 

summation). 

Now use the second cluster specification of Section 4.2.4, noting that the length 

tl is an EXP(Ai) random variable. The impulse rate within clusters over this length 

is Ai impulses per second, so it follows that for a given t^, N ~ Poisson(Ait^) and 

the Tj's (for i > 0 and without respect to ordering) are i.i.d. uniformly distributed 

over [t — t&t], (Once again, time is in the negative direction). Defining afti = 

o-iU{Ti\ x, 6i) as the contribution to the received waveform of any one of the impulses 

other than the first in a cluster X, it also follows that the characteristic function of 

the conditional pdf of a,t/j given x, t and t^, denoted $i(u)\x,t,ti, is 

$i(u>)\x,t,tL   =   E[eju/aiU^'x'$^} (4.17) 

fa(a)da / fe{0)dO /      -dr <J»aU^e\       (4.18) 

where the integrand in (4.18) is brought to the far right for reading clarity. (This 

format is used in several of the following equations as well). The impulsive waveform 

U(T; x, 0) is specified without loss of generality to be zero for r < 0 in order that 

the system remains causal. 

The characteristic function of X given x and t, including the i = 0 (first) impulse, 
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is then 

=   [/_~ fa(a)da jf fe(0)dß e^aU^ 
-AlT 

1/0 n=0 "• 

(4.19) 

(4.20) 

Uai© 

•r 
JO 

,jwaU(t;x,8) 

jwaU(t;x,9) 

/    ALe-AiTeAlT(($i(^|x't'T)-1) dr (4.21) 

Ai,e' -AiT*i XI /-(»)^/e /e(^/,lr «^W^J-l) dr. 

(4.22) 

Note that the —1 in the last exponent of (4.21) is brought inside the integrals over 

a, 0 and r' in (4.22) (the joint pdf will still integrate to the same result), and the 

notation of the bracketed term in (4.20) is simply abbreviated in (4.21) and (4.22). 

In order to get the characteristic function of any cluster that is randomly dis- 

tributed over a region x € £l(Ri, R2) {i.e., the region for which i?i < x < R2) and 

a starting time t € [0, T], expectations must be taken over x and t: 

•xM   =   fjjr^AiJJ^™ 
F Jo 

XLe-XLT ^LfeJL^i^^-l)} dr\ dxdt,    (4.23) 

where again the integral expressions on a and 0 have been abbreviated. 

Now define the superposition of all clusters within the region (}(#!, i22) and 

starting in the time interval [0, T] as 

Nc Nc  Nk 

^HiA = Yl Xk = ]C J2ak,iU(Tk,i',Xk,9k,i) 
k=l k=l t'=0 

(4.24) 

as in Eq. (4.4).   The number of clusters Nc is a Poisson random variable with 
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parameter 

^T,RUR2 = / /   p{-x.,t) dtdx. 
Jn(R1,R2)Jo 

,    . .  . , (4-25) 

and the (xjt,ifc) terms (the locations and starting times of the clusters) are i.i.d. 

with distribution 

fT,Rl,R2 = -p^Q-, x € ft(i2l9 J?2), < € [0,T]. 
\T,RUR2 

(4.26) 

Since cluster formation is a Poisson process, the characteristic function of YT,RUR2 

can be calculated in the same manner as the second term on the right in (4.19) to 

get 

$y(w) = eAr'Äi-*ä<**(',0-1>. (4.27) 

Inserting (4.26) into (4.23) and the result into (4.27), then taking logarithms, results 

m 

**(») = iTi^M[ii^v^}\r^ -XLr 

l^SJJL^{^aü(r'""e)-i)] dr 1 \ dxdt,        (4.28) 

where the last -1 is brought inside the integrals over x and t without changing the 

result. Inserting (4.1) and (4.3), noting that fa(a) is a symmetric distribution, and 

using the identity cos 2a: = 1 — 2sin2(x) results in 

iog$^ = /o7^{[2£o/e
cos^ixi"^^))][rA^T 

. J^/Z,/e/^^(^(^N^(^)))] A       A   dxdt 

(4.29) 

At this point the last exponential in (4.29) must be converted to a Taylor series, 
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resulting in 

loi \Le-"Lr g*^ = /o7^{[vi/ecos^ixi"^^][rA 

%tTt\LSsLdlf (-a(^i-r^^)))]J) * 
-1 I dxdt. (4.30) 

In order to proceed further, solve for only the j = 0 term and group the last —1 

with this term as well. Since the integral over r is one in this case, the j = 0 term 

of <&K is 

*yj=o(w)    =    e/oTi"n*[-4I=o/esi"2(^W^))]&* (4.31) 

Now integrate over x first, and consider the substitution r = |x|. If n = 1, the 

integral is over dr; if n = 2, switching to polar coordinates results in an integral 

over 27rr dr; if n = 3, spherical coordinates give an integration over Anr2 dr. For 

general dimension n, the integral is over cnr
n~l dr. Using this conversion and an 

additional substitution r' = r-", dr' = —vr~v~xdr (and then dropping the primes) 

results in 

(4.32) 

Now set #i -» 0, i?2 —► °o and T —>■ oo, define a = 2-Ä, where 0 < a < 2, and use 

the definite integral (3.823) from Gradshteyn and Rhyzik [20], 

/•oo f (u) cos HE 
/    x"_1 sin2axdx = V^ ß

2 ,   a > 0, -2 < /z < 0, (4.33) 

to get the result 

$yj=0 = e-ToH°} (4.34) 
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where 

7o   = 
2c°CnpoF(l — a) cos 7ra 

2 

ua 

/     //    aa\E{t;6)\afa{a)fe(6)dtd6da. (4.35) 
Jo     J€> JO 

(Note that the relation T(l — a) = —ar(—a) is used in (4.35)). 

In order to solve for the j = 1 term of Eq. (4.30), rewrite it using this identity: 

sin2(a) cos(26) = - sin2(a + b) + - sin2(a — b) — sin2(6) (4.36) 

to get 

log*yj=i(w) 
JO     Jn \X\'i Jo I Jai=0J®iJa2=0Je2JT'=t-7 

\1 sin2 (|WCl Ixp^a^^; 00 + a2£(r'; 02))) 

+i sin2 QWCl |x|-"(ai£;(<; 00 - a2£(r'; 02))) 

-sin2(-a;c1|x|-,'alJE;(<;öO) dr'... drdxdt. (4.37) 

The three sin2() terms in (4.37) may be integrated separately, each in a manner 

analogous to Eqs. (4.31) - (4.35), to determine the result 

$Yj=i = e 
-71 M° (4.38) 

where 

7i   = 
4c?cny90Air(l-a)cos^  r°° /■«>      _XLT r°°    r    r°°    r   p 

JO     JO Jai=0 J&i J(Z2=0 J&2 Jt-T va 

\\axE(t- 61) + a2E(r'; 02)\" + l-\aiE{t; 9,) - a2E(r'; 92)\a 

-h^flor dr' d62 da2 d$i dai dr dt. (4.39) 
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Moving on to j = 2, the bracketed term 

from Eq. (4.30) is now squared, resulting in 

roo       r       rt /-co       c       ft 

iff    dTif /    ^ 

(sin2(^a2Cl|x|-^(^;ö2))) (sin2(^a3Cl|xr^(^; 03))) .      (4.41) 

Using the formula 

111 1 
sin2 a sin2 b = - sin2 a + ~ sin2 b — - sin2 (a + b) — — sin2(a — &), (4.42) 

results in an expression of the form of (4.37) but now there are nine sin2() terms 

instead of three. When each is integrated as in (4.32) - (4.35), the result is 

$KJ=2 = e-^"lQ (4.43) 

where 

72   = 
8c?Cnp0A2r(l-a)cos^   r~  roo ^^ 

Jo   Jo va 
/•CO /• /"CO /• ft fOO /• rt 

/    fadax /  /Ä /    /ae?a2 /   fed$2 /     ^ /    fada3 /  /,d03 /    <*T£ 
Jo J6i Jo Je2 Jt-T      Jo Je3 Jt-r 

2 

_1 
~4 

1 
~4 

1 
+8 

1 
+ 8 

«i£(Mi)la 

1 
ai£(t; 0!) + a2£(^; 02)|° - -\aiE{t- 9X) - a2JB(^; 02)|<* 

axE(t;6X) + a3£(T3; 03)|
a - \\axE{t; 6,) - a3E{r^ 63)\

a 

aiE(t; ox) + a2£(7& 62) + a3E{r'z; 63)\
a 

aiE(t; 9X) + a2E{r'2- 92) - a3E{r^ 03)|
a 
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+^\a1E(t; 9X) - a2E{r'2; B2) + azE{r'z- 63)\a 

+^\a1E{t-61) - a2E(T^,e2) - a3E(ri;63)\a \drdt. (4.44) 

For the j = 3,4,5 ... terms, each increment of j adds three additional integrations 

and multiplies the number of sin2() terms (as in (4.37)) by three; however, the 

relation (4.42) may be applied repeatedly until 3J individual sin2() terms remain, 

with arguments consisting of the sums and differences of the aiEiji; 0t) terms. It 

follows that 3^ integrations of the form (4.32) - (4.35) may then be performed until 

the result 

$FJ = e"7>|a (4.45) 

is obtained, but the 7,- become increasingly complicated to express. Convergence is 

assured since the exponential Taylor series converges for all real arguments and by 

inspection of (4.29), from which it is apparent due to bounds on the sine and cosine 

functions that the term in braces is between -1 and 0 for all x, t. 

The final desired result $x (^) is found by multiplying 

$y («) = fi *yj = c" (Er=0 7J) M°, (4.46) 

and thus it is proved that the characteristic function of the received noise pdf is 

that of an a-stable distribution. By the uniqueness of characteristic functions, this 

proves that the marginal pdf of the noise is an a-stable distribution. 

4.3.1    Probability Density Function of the Noise Envelope 

The previous sections derive the pdf of the received noise, but it remains to determine 

the statistics of the narrowband envelope. Since the E(t,9ys of Eq. (4.1) may be 

assumed to include an arbitrary bandpass filter response without loss of generality, 

it remains only to prove that the equivalent lowpass signals (as in Eq. (2.1)) are 

jointly a-stable. 
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Let E(t; 6) be narrowband, so that it can be represented as 

E(t;9)   =   Ei(t;0)cos(2irfot)-EQ(t;e)sm{2irfot) (4.47) 

=   A(t; 9) cos (j)cos(2n f0t) - A(t; 6) sin<f>sin(27r/0f), (4.48) 

where A and <f> are the complex amplitude and phase as in Section 2.3. Equation (4.4) 

may then be written 

Y   =   YIcos(27rf0t)-YQsm(27rf0t) (4.49) 

J] {Xlk cos(27rf0t) - XQk sm(2irf0t)} (4:50) 
fc=i 

Nc  Nk 
0-k,iC\ =   Y1Y1 ~\JTT {Aitk,*; 9k,i) cos <f>kii cos(2nfot) 

- A(tkii; 9Ki) sin 4>kti sin(27r/0i)} . (4.51) 

Now assume the <£'s are i.i.d. uniform [0,2n), as in Section 2.3. The joint char- 

acteristic functions §xI,xQ{u) and ^YI,YQ{'^) (where again u = (UJI,U2)) may be 

determined using an analysis similar to that of the previous section, the equivalent 

of Eq. (4.29) being 

[2/-o L h C d* COS (aCllxl~!/A(i; °)^ cos<t> + u-i sin^))| [ f° XLe~XLT 

(4.52) 

Using a Taylor series as before and noting that u\ cos <f> + u>2 sin <f> may be written 

|t<;| cos(</> - ^J (where ^ = arctan(^)), the equivalent of Eq. (4.30) is 
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2 i^ I.Y I"" d(^cos {\u\aci\x\~VA(^ e) cos(<£ - 4>SJ) 

Ki=o Jo \JZ^        ?! Ua=0 JQJt-T        2TT Jo 

sin (^Macx |x|-^(r'; Ö) cos(<£ - ^))]j dr -1 . dx<ft.       (4.53) 

Comparing (4.53) to (4.30), it is apparent that $YJ,YQ rnay be solved in the 

manner of Eqs. (4.30) - (4.46) to determine 

-(Er.i-«)kia 
(4.54) 

where for example 

7o   = 
2c?cn/90r(l-a)cos^ 1    r** 

va 
r-oo   r    roo 

2TT 

ri-K 

I     I cos <j>\ad4> 
Jo 

roo    c     roo 
/     /   /    aa\A(r;e)\afa(a)fe(e)dtd9da. (4.55) 

Jo   Je Jo 

The characteristic function Eq. (4.54) defines an isotropic a-stable random vec- 

tor. It is shown in [37] that such a random vector has a complex envelope A = 

JX] + XQ with the pdf of Eq. (3.5); therefore, it is finally proved that the cluster- 

ing Poisson model predicts an a-stable envelope distribution for A. 

4.3.2    Validity of Parameters 

The parameter v in Eq. (4.1) is the rate of attenuation of the noise signals with 

distance; typical values used in previous models range from 0.5 to 1.0 [18]. Given 

that n = 2 is the most realistic choice from a physical standpoint (or perhaps 

slightly larger than two for an empirical approximation), and // is fairly small since 

the source density does not decay significantly with distance, it follows that values 

of a in the range 1.5 - 2.0 are quite reasonable. Note that for n > v + ft, the noise 
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is infinite when R2 -» oo, but this is compensated for by fixing R2 at some large 

value .Rmax with the assumption that it does not appreciably affect the integrals of 

the form of (4.32) - (4.35). 

4.3.3    Arbitrary Receiver Gain Pattern 

The preceding analyses assume that the receiver's gain pattern is omnidirectional, 

i.e., the same in all directions. It is now shown that if the receiver has an arbi- 

trary gain pattern, the received noise waveform is still a-stable distributed. This 

result follows because the key integration that results in the a-stable distribution, 

Eqs. (4.32) - (4.35), is over distance r from the receiver and not over angle of arrival. 

An arbitrary gain pattern may be incorporated without loss of generality as a 

functional dependence of fa(a) on direction angle ( (n = 2 is assumed, again without 

loss of generality), so that fa(a) is now fa\((a, (). Using this modification, Eq. (4.32) 

becomes, for example, 

(4.56) *Y,j=0 — c J , 

which still results in an expression of the form 

$yj=0 = e-^MQ, (4.57) 

but now 7o is 

7o 
2c?cnp0r(l-a)cos^ 

i/a 
r2ir    /-oo ]       rZT    /-oo    /•     /-oo 

IWo   Jo   Je Jo   aa\E^0)\aUd^Ofe(0)dtd9dadC.       (4.58) 

All the other $yj terms will have the same modification to their 7^ terms, and the 

final result will still have a characteristic function of the form of (4.46) and (4.54). 

Thus an arbitrary gain pattern may be added to the analysis without changing the 

result that the noise is a-stable distributed. 
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4.4    Impulse Interarrival Distribution of Clustered 

Poisson Noise 

This section shows that the clustering Poisson model accurately predicts the im- 

pulse interarrival time distributions of low-frequency noise. Predicted interarrival 

distributions are determined from the model, and these are shown to match the 

distributions derived from the data. 

As defined in Section 4.2.3, the clustering model proposes that the number of 

follow-on impulses (after the first) within a given cluster is a geometric random vari- 

able, and that the interarrival times between adjacent impulses within each cluster 

are independent and EXP(Ai) distributed. The total process is the superposition of 

all the impulses in all the clusters, and the clusters themselves are occurrences of a 

Poisson random process with parameter A2 clusters per second. 

Since the occurrence of an impulse is defined as the crossing of a threshold level 

as in Figure 2.7, the individual impulses can be represented for simplicity as Dirac 

delta functions. The total process can then be expressed as 

oo      Nk 

y(t)= £ E*(*-**-7*,o, (4-59) 
k=—oo i=0 

where Nk is the number of impulses in cluster k, tk is the start time of cluster k, 

and r^i is the time from the start of the cluster k to the ith impulse of cluster k. 

(Time is now in the forward direction). Note that r^o = 0 for all k, and also that 

Nk — 0 for clusters with no follow-on impulses. 

If a stopwatch is started at an arbitrary point in time and stopped at the next 

occurrence of an impulse, the time shown on the stopwatch is the waiting time for 

the next impulse, or the forward recurrence time. The forward recurrence time is a 

random variable Tw with marginal pdf hw{t). 

If the stopwatch is instead started at the occurrence of an arbitrary impulse and 

stopped at the next impulse, the time on the stopwatch is the impulse interarrival 

time. This random variable is denoted T>, with marginal pdf /x7(*)- The following 

sections derive both fTw(t) and /r7(i) for the clustering Poisson model, and then 
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compare the derived fTw(t) to the interarrival distributions seen in the data. 

4.4.1    Waiting Time pdf 

The pdf frw(t) of the forward recurrence time of the process y(t) is most easily 

calculated by setting the time origin (t = 0) to be the stopwatch's starting time, 

then determining the probability that there are no impulses in the time span [0,t\. 

It follows that 1 — P(no impulses in [0,2]) is the probability that the waiting time 

is less than t, so differentiating this quantity results in the pdf frw(t). 

In order to find P(no impulses in [0,2]), the pmf of N0, the number of clusters 

active at time zero, must be calculated. This pmf is calculated in three steps: (i) 

The number of clusters N created in the range [—T, 0] is a Poisson(A2T) random 

variable. If ordering is neglected, the starting times of these clusters are uniformly 

distributed over [-T, 0] and are independent of each other. The probability PA that 

any given cluster Xk with starting time tk ~ U([—T, 0]) is active at t = 0 can then 

be calculated by conditioning on 2^: 

PA   —   P(cluster starting in [-T, 0] is active at t = 0) 

=    j;£TP(TL>-T)dT 

(ii) Now condition on N: given iV clusters with starting times uniformly and inde- 

pendently distributed over [—T, 0], each with a probability of surviving past t = 0 

given by (4.60), then the number of clusters surviving at t = 0 is a binomial random 

variable: 

P(k clusters active at t = 0\N) 

Nl      P}(1 - PA)N-k, k = 0,1,2... N. (4.61) k\(N-k) 
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(iii) Since N is Poisson^T), the final result is 

P(k clusters active at t — 0) 

=   E (X2T)J        H(|>%,3(1 - Ar*, * > 0 (4.62) 
-A2T   /     pA     sk™   (\2T)*+n 
(l^E^l-^ («3) i!    \1-PA 

(X2T(^(l-e-^)))keM*(—r)) 
k\ 

(4.64) 

where (4.63) results from a change of variables n =^ k+n. From (4.64) it is clear that 

iVo is a Poisson random variable a parameter equal to X2T scaled by the probability 

(4.60), a well-known result for a Poisson process modulated by an indicator function. 

Setting T —>■ 00, the final result is that iV"o is a Poisson(A2/Ai) random variable. 

Each of the No clusters active at t = 0 has as least one impulse remaining. In 

addition, from the memoryless property of exponential random variables, the first 

impulse after time zero in each of these clusters has a time of occurrence that is 

EXP(Ai) distributed. Therefore, in order for there to be no impulses in [0,i], all 

iVo active clusters must have their next impulse occur after t. Conditioning on iV0 

results in 

P(no impulses in [0, t] due to clusters starting before time 0) 

E ^ («-1")" (4-65) 
n=0 

*5 

=   e"^1-^1'). (4.66) 

Taking into account that there must be no new clusters in [0, t] as well, 

P(no impulses in [0, t]) = e^e"^1-6"*1'), (4.67) 

and so the forward recurrence pdf is finally found by negating the derivative of 
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Eq. (4.67): 

hw{t) = A2 + ^V^ 
Ar, 

D-^(l--»i«)      X2t (4.68) 

4.4.2    Interarrival Time pdf 

The interarrival pdf /TJ(2) calculation is similar to the forward recurrence calculation 

except that there is by definition an impulse at time t = 0. It is not known whether 

this impulse is the first impulse of a new cluster or an additional impulse from an 

established cluster, however, so it is necessary to condition over both possibilities. 

First calculate the expected value of the number of impulses in a cluster, which 

is 1 + E[Nk\. Using the pmf (4.14), this value is 

l + E[Nk]   =   l + £ 
n\i Ai 

~^0 Ai + Ax, \ Ai + Ax, y 

Ai 
1 + Ä? (4.69) 

Furthermore, if the process is modeled as existing for all time, the probability that 

any single impulse is the first of its cluster is the reciprocal of (4.69). Using both 

this information and Eq. (4.67), in addition to the fact that a new cluster at time 

t = 0 must not cause an impulse in (0,t\, results in 

P(no impulses in (0,2] given an impulse at t = 0) 

-    (       l        c-^ +     E[Nk]    ) e-^e-^1-6"1') (4 70) 
"    [E[Nk + l]e       +E[Nk + l])e      6 ■ (470} 

Negating the derivative of (4.70) then gives the marginal interarrival pdf 

e_,2t_£(i_e-Alt) 

Mt) Ai + AL 

AiA2 + AiAz, + A2A£, + 
AiA2 

A, 
e-Al* + A1A2e-

2Alt), t > 0. 

(4.71) 
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Threshold Ai (s-1) A2 (s-1) AL (S-1) 

5E[\X\] 12.76 4.71 1.29 
10E[\X\] 9.17 2.84 1.06 
15E[\X\] 7.42 2.09 0.95 
20E[\X\] 6.07 1.71 0.89 

Table 4.1: Parameter values of the clustering Poisson pdf s in Figure 4.1 

4.4.3    Data Analysis 

Now that /rj(i) has been determined, it is compared to the impulse spacings seen 

in low-frequency noise data. Figure 4.1 shows the fit of Eq. (4.71) to the interarrival 

time pdf of Arrival Heights noise data in the 25.5 - 27.5 kHz range, for the whole 

month of December 1995, during the hours 08 - 16 UT of each day. The four lines 

in the plot are for threshold levels of 5, 10, 15 and 20 times the expected value of the 

magnitude of the noise. The accurate fit of Eq. (4.71) to the data is quite apparent 

from the dotted lines in the figure; the parameter values used for each dotted line 

are listed in Table 4.1. 

Many more data samples were examined in addition to those in Figure 4.1, but all 

of them have the same form for their interarrival pdf 's independent of threshold level 

(as long as the threshold is large enough to distinguish impulses from background 

noise). The term A2 varies with location and seasonal and diurnal variations, but 

average cluster length is always on the order of one second and Ai is on the order 

of 5 - 10. 

4.4.4    Physical Justification of the Model 

Since the clustering Poisson equation (4.59) of Section 4.4, 

oo     Nk 

y(t)= E £*(*-**-**..■)» (4.72) 
k=—oo i=Q 
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Arrival Heights VLF pulse spacing pdf, Dec. 1995,08-16 UT 

Figure 4.1: Fit of the clustering Poisson impulse interarrival pdf, Eq. (4.71) (dotted 
lines), to Arrival Heights impulse interarrival data. The threshold levels are 5, 10, 
15 and 20 times the first moment of the noise. 

differs from equation (4.4) of Section 4.2.2: 

Nc Nc  Nk 

^ = £** = £E C\ak,i 
E(Tk,i;6k,i), (4.73) 

k=l k=l i=0 

it remains to specify the connection between the two. Note that y(t) in (4.72) is a 

waveform that represents the detection of impulses above a certain threshold, while 

Y in (4.73) is the received signal at a given point in time. 

Begin by defining the range r to be the distance from a given cluster's source to 

the receiver (r = |x|), and note that it depends only on \a\ and r whether or not 

an impulse crosses a given threshold Yth in the received waveform; i.e., it can be 

specified with no essential loss of generality that cx = 1 and max\E(Tk,i; 6k,i)\ — 1, 

independent of 0. The probability that an impulse from the cluster crosses Yth, as 
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a function of r and Yth, is then 

Pr,Yth =P{^> Y*)  = 2 jythru /•(«) dfl- (4-74) 

However, this poses a problem, since it is not known from the received waveform 

how many impulses and/or entire clusters have gone undetected because of small 

values of a. In order to proceed further, it is approximated that for a given Yth, 

there exists some cutoff distance rc such that all clusters with r > rc can be ignored. 

This cutoff distance is chosen to be 

r. = f (4.75) 

for some constant Ro. 

For the region r < rc, the spatial density of clusters is given by Eq. (4.3): 

p{r) = £ (4.76) 

but some of the clusters (especially for r near rc) will still go undetected due to 

propagation attenuation. To compensate for propagation effects, an effective source 

density is defined as 

Using this effective source density, it is assumed that all clusters with r < rc are 

detected. Thus the effective number of spatial cluster sources for threshold Yth, in 

units of 1/s, is 

*-/**$£*. (4J8) 

and carrying out this integration gives 

*-"-^ Y-(n-^^ (4J9) PoCnftp \ y-{n-p.-v) 

n — jj, — v 

a polynomial in Yth-  To confirm the validity of this approximation, the values of 

relative threshold level and A2 listed in Table 4.1 were fit to Eq. (4.79) by taking 
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the logarithm of both sides of (4.79) and using a linear regression. The exponent 

n — fj, — v = 0.73 was found to give a very good fit, and is physically justified by the 

expected values of n « 2, v « 1.0, and \i a small positive number. Thus a physical 

connection between the parameters of (4.72) and (4.73) is shown. (The first term 

in parentheses in (4.79) is 15.3, but this number is irrelevant since po is unknown, 

Ro is arbitrary and only relative threshold levels are used). 

It is seen from the values of Ai and Ax, in Table 4.1 that the expected number of 

impulses per cluster, 1 + \IJ\L-, is on the order of 5 - 10. 

4.5    Power Spectral Density of Clustered Poisson 

Noise 

This section derives the power spectral density (PSD) of clustered Poisson noise. 

It is shown that clustering has an effect on the power spectral density only when 

the impulses within clusters are correlated, so for the clustering Poisson model of 

Section 4.2.2, the PSD is simply the ensemble average of the PSD's of individual 

impulses. This is confirmed in the data by calculating PSD's of (i) isolated impulses, 

and (ii) clustered impulses, and showing that they are the same. 

Consider a simple Poisson filtered-impulse random process 

oo 

Y(t)=   J2 Xk(t-tk), (4.80) 
k=—oo 

where Xk is the random waveform of the fcth event and tk is its time of occurrence. 

Since the occurrence of events is a Poisson process, the random variables tk — tk-i 

are i.i.d. ~ EXP(A). The two-sided power spectral density of Y(t) is given in [22] 

as 

SY(f) = A£[|*(/)|2] + (XE[X(0)})2S(f), / € » (4.81) 

where X(f) is the Fourier transform (FT) of x(t), 

/oo 
x(i)e-l27r/< dt, (4.82) 

-oo 
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and x(t) is a given realization of Xk(t) (or X(t); the subscript may be dropped since 

the Xk(tys are i.i.d. waveforms). 

Now define the Xk's of Eq. (4.80) to be cluster waveforms similar to those in 

Eq. (4.4): 

Xk(t - h) = £ -g$E(t -h- rKi- ek,{), (4.83) 

where the rkyi now refer to the position of the ith. impulse of the kth. cluster relative 

to the start of that cluster. Then let Y(t) be the sum of all the clusters: 

n*) = £ £ T^E{t -tk- rKi- *w). (4.84) 
k=\ »=o lx*l 

The PSD of Y is still Eq. (4.81), but now (4.83) is inserted into (4.80). Note once 

again that clusters start with an impulse (the i = 0 terms), and the iVfc's are i.i.d. 

geometric random variables for all k. 

The clusters come from a variety of locations x and distances |x| and they are 

all independent, so the resulting PSD of Y is the summed contributions from all 

locations. Integrating over the region using r = |x| and ignoring the zero frequency 

(second) term of Eq. (4.81) (it is assumed to be zero) gives 

J0 ru+r dr) E [lFT of a]Qy one cluster|2] , (4.85) 

where the term in parentheses is the effective source density normalized by propaga- 

tion attenuation, as in Section 4.4.4. (-Rmax is as in Section 4.3.2). Further defining 

this term in parentheses as A and the waveform of any one cluster relative to its 

starting point as 
N 

X(t) = £ ci«.-£(< - T{; $i), (4.86) 
i=0 

Eq. (4.85) can be written as 

SY(f)   =   \E[\XU)\*] (4.87) 
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=   \E 

=   c\\E 

=   c\\E 

£° farciaiE(t - Ti-0i)\ e~j2*ftdt 

j=0 

N   N 

t=0 j=0 

(4.88) 

(4.89) 

(4.90) 

where £(/; 0) is the Fourier transform of E(t; 6) and (4.89) results from the Fourier 

shift property. In order to proceed further, allow the a,-'s to be wide sense stationary 

with autocorrelation function R(k). (They are still mean zero with variance a\ = 

R(0)). Breaking the double sum into terms for which i = j and terms for which 

i / j and including the change of variable k =>• \j — i\ in the latter gives 

Sy(f)   =   Xcl(l + ^-)alE[\S(f;e)\2]+crX\E[£(f;0)}\2 

■JV-l N-i 

•   E E R(k) (E[ej2*f(Ti+k-r')] + E[e-j2*f(Ti+«-Ti)}) 
-i=0  k=l 

(4.91) 

However, the last two expectation terms are the characteristic function of the sum 

of k interarrival times within a cluster, and that characteristic function's complex 

conjugate, using 2nf as the frequency variable instead of u. Since the interarrival 

times are i.i.d. ~ EXP(Ai), the characteristic function expression is simply 

j5[ei2T/(Tj+fc-T0] _ $*(/)} 

where 

$ 
Jo Ai — J2IT r 

(4.92) 

(4.93) 

Now consider two different cases for the autocorrelation Ra(k): For the first case, 

set Ra(k) = a25{k), so that 

Sy(f) = \cl(l + ^-)a2
aE[\£(f-9)\2' (4.94) 
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In this case the PSD of the signal Y is simply a scaled version of the PSD of the 

individual impulse waveforms. 

For the second case, let Ra(k) = cr^ßW where 0 < ß < 1.  The double sum in 

(4.91) can be converted to a single sum such that Sy(f) can be written 

SY(f)   =   Xcl(l + ^yaE[\S(f;e)\2]+4X \E[£(/;B))\2al 

■E TV 

N 

V. 
k=l 

£(iV + 1 - k) (ßk$k(f) + ßk$k*(f)) (4.95) 

which indicates that $ is simply scaled by ß for this case of R(k). 

In order to solve the last expectation in (4.95), algebraic summation formulas 

are used to find 

and since N is geometric as in Eq. (4.6), it then follows that 

(4.96) 

E, N 

N 

J2(N + 1 - k)ßk$k(f) 
Ut=l 

(l + ft) (1 - ß*{f))ß*(f) ~ ß*if) + T^B 
(1 - W))2 

2 

TO) (4.97) 

This result, when inserted into (4.95), is cumbersome to solve, but it can be simpli- 

fied somewhat with the approximation / >> A1; which is true for the VLF frequency 

range. (Note from Table 4.1 that Ax is on the order of 10). Using this approximation, 

E N £(/V + i _ k) (ßk$k(f) + /?***(/)) 
■k=l 

Ai " 

Az 
ßXx      +      ßXx 

X1-j27rf     X1+j2nf 
(4.98) 
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and so 

Sy(f) » \cl(l + ±yaE [\S(f; 0)|2] + &&ß£ \E [£(f;6)]f. (4.99) 

Upon examination of (4.99) it is apparent that the second term, the one due to 

clustering, is negligible relative to the first for large values of /. Therefore, in the 

VLF range, clustering has no effect on the power spectral density even if the a;'s are 

highly correlated. To verify this fact in the data, 1/10 second samples containing 

one isolated sferic (within a one second interval) were frequency transformed, then 

compared with the frequency transform of those 1/10 second samples containing 

many sferics. Averages of all the transforms of the June 1986 data at Thule, Green- 

land are shown in Figure 4.2; it is clearly seen that there is no difference in the 

form of the two power spectral density curves. (The y-axis is a relative index only; 

the plots for the two cases are offset for clarity. The rolloff below 5 kHz is due to 

a high-pass filter inserted to reduce power line harmonics). Although these results 

do not provide any additional proof of clustering, they do show that clustering does 

not affect the PSD of a signal in the VLF frequency range. 

4.6    Conclusions 

This chapter proposes a statistical-physical clustering Poisson model for atmospheric 

noise. According to the model, the sources of the noise are clusters of impulses with 

independent and identically distributed waveforms. Cluster occurrence is a spatial 

and temporal Poisson process with source distribution independent of direction and 

time. The impulses within clusters are defined as variable length Poisson processes. 

The clustering Poisson model is justified by the physical properties of lightning, and 

in addition, it is derived in conjunction with a statistical analysis of thousands of 

hours of globally collected ELF/VLF/LF radio noise data. 

The model is verified by comparing it to four statistical features of atmospheric 

radio noise: correlations between impulses (Section 2.5), envelope amplitude proba- 

bility distributions (Section 4.3), impulse spacings (Section 4.4), and power spectral 



CHAPTER 4.   CLUSTERING POISSON MODEL 76 

Thule, Greenland, VLF PSD, June 1986, clusters vs. single impulses 

1.5 
frequency (Hz) 

Figure 4.2: Spectral content of individual sferics versus clusters of sferics. The data 
are from June 1986, at Thule, Greenland. There is a lowpass filter inserted near 7 
kHz. The spikes below 5 kHz are power line harmonics, and the spikes above 10 
kHz are other man-made signals as in Figures 1.2 and 1.3. 
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densities (Section 4.5). The correlation properties justify the assumption that the 

a's of Eq. (4.4) are i.i.d. and that the clusters and impulses within them are in- 

dependent as well. The envelope pdf and impulse spacing analyses clearly indicate 

that the theory of the model closely matches the data, and finally, clustering of 

pulses is shown to have little effect on the power spectral density of the noise. 

Given the accuracy to which the predicted statistical features fit the actual data, 

the clustering Poisson model proves to be a good candidate as a model for atmo- 

spheric noise. 



Chapter 5 

Low-Frequency Communications 

5.1    Introduction 

As discussed in Chapter 1, there are a number of digital communication systems 

that operate with carrier frequencies in the VLF and LF frequency bands, and they 

employ receivers specifically designed for impulsive noise. Since the best receivers are 

based on knowledge of the statistics of the additive interfering noise, and since the 

previous chapters present results on the statistical analysis and modeling of VLF/LF 

noise, it is possible that these results may be used to design better performing 

receivers than those currently in use. 

Specifically, it is shown in Chapter 3 that low-frequency noise has an ct-stable 

envelope distribution at locations relatively distant from heavy sferic activity. Since 

many VLF/LF communication systems are designed to operate at such locations, 

it is of practical use to determine whether or not a receiver designed specifically for 

a-stable noise is worth its complexity in terms of reduced bit error rate (BER). 

This chapter presents receivers designed for operation in a-stable noise and 

compares their BER performance to the conventional nonlinear analog receivers 

commonly used with impulsive noise, such as clippers, blankers, limiters and log- 

correlators. The signal formats examined are quadrature phase-shift keying (QPSK) 

and 16 point quadrature amplitude modulation (16 QAM), i.e., two or four constel- 

lation points per signal dimension. Hundreds of simulations using time-series data 

78 
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from various times and locations and at various center frequencies and bandwidths 

are performed, and the following results are found uniformly: for QPSK signals, 

virtually no performance improvement is gained when using an a-stable receiver 

instead of a clipper (the best conventional receiver), but for 16 QAM signals, an 

improvement of several dB is gained by using an a-stable receiver. In addition, it 

is found in some cases that, due to the nature of impulsive noise, 16 QAM offers a 

lower BER than QPSK for the same average transmitted power and data rate. 

5.2    Receiver Structures for Impulsive Noise 

This section assumes basic knowledge of digital communications, and begins with 

the problem already cast into a vector form. Reviews of digital communication 

concepts can be found in [32, 38, 43]. 

First start with binary phase-shift keying (BPSK). The receiver must choose 

between two equally probable hypotheses h0 and hx (representing either a zero or a 

one bit) based on the received vector X: 

hx:   X = S + N, 

ho:   X = -S + N, 

where X, N and S are complex n-vectors. This problem may be readily generalized 

to QPSK in two dimensions, noting that the simulations do not not perform symbol 

detection (i.e., the inphase and quadrature channels are decoded separately). 

For 4PAM (pulse amplitude modulation), the problem is that of choosing be- 

tween the four choices 
hlfi:   X = 3S + N, 

h1A:   X = S + N, 

Äo,i:   X = -S + N, 

h0fi:   X = -3S + N, 

where the subscripts on h indicate the bit assignments of the symbols. The gen- 

eralization to two dimensions results in a 16 QAM constellation. The vector X is 

determined by sampling the analog input to the receiver and has length n such that 
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the entire nonzero portion of the original symbol s(t) is included. If this nonzero 

portion of the symbol covers time T (the symbol length) and the receiver's bandpass 

front-end input is limited to bandwidth B, n is on the order of n = 2BT. Note that 

B refers to the entire front-end detection bandwidth of the receiver, which can be 

much larger than the bandwidth occupied by s(t). When the signal is downcon- 

verted, the inphase and quadrature components are limited in frequency to ±y and 

each has BT degrees of freedom, a well-known result from the Nyquist theorem. 

In most signal detection analyses, N is assumed to be an uncorrelated Gaussian 

random vector (GRV) with each element distributed N{ ~ 7/(0, cr2) for all i (where rj 

refers to the normal distribution). This assumption has lead to a number of elegant 

results in information theory pertaining to optimal receivers and channel capacity, 

but it is not applicable for atmospheric noise. 

5.2.1    Maximum-Likelihood Detection 

Using BPSK for simplicity and given that hypotheses hi and h0 are equally probable, 

the decision rule that minimizes the probability of error for a received vector X is 

to compare the a posteriori probabilities P(X.\h1) and P(X\h0) and choose the 

hypothesis corresponding to the larger one, which means choose hi if 

/N(X-S) 

/N(X + S)~ 

and ho otherwise. 

For N an i.i.d. GRV this results in choosing hi if 

n 

n 
!=1 

-L-e (I* 
20-2 

-k-e- 
21R72C 

(I* ,■ + *,■ I)2 

2<r2 
>1, 

which can easily be shown by taking logarithms and rearranging terms to be equiv- 

alent to a linear matched filter detector, i.e. choose hi iff (if and only if) X'S > 0. 

The matched filter's impulse response is the time inverted signal, demonstrating the 

important and well-known result that the optimal receiver for white Gaussian noise 
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(WGN) filters out all the input noise except for the noise at frequencies occupied 

by the signal. If the bandpass signal occupies a bandwidth Bs « B, then the 

equivalent baseband signal essentially has only BST free dimensions, and only the 

noise samples in these dimensions affect the decision. Two important results that 

follow for WGN are that (1) the front-end bandwidth of the receiver need only be 

large enough to pass the signal, and (2) noise and/or other man-made signals out- 

side the frequency band occupied by the signal of interest do not degrade decision 

performance because they are rejected by the matched filter. 

For impulsive noise, however, the noise samples are not Gaussian and noise 

outside the signal bandwidth must be considered in the detection process if possible. 

A large predetection bandwidth relative to the signal bandwidth typically enhances 

the performance of VLF/LF receivers since the impulses remain sharp relative to 

the symbol length and can be more cleanly excised or compensated for. Otherwise 

the impulses are spread out over a large portion of the symbol waveform. On the 

other hand, the predetection bandwidth must be small enough to avoid adjacent 

man-made signals, and the signal bandwidth must be large enough to provide a 

useful information rate. 

Once the signal characteristics and noise bandwidth are specified, the terms 

/N(X — S) and /N(X + S) must be determined in order to implement the maximum- 

likelihood (M-L) receiver. These are difficult to solve for impulsive noise distribu- 

tions, however, and several approximations must be made. Receiver structures 

based on these approximations are evaluated in Section 5.4, but first a review of 

conventional impulsive noise receivers is presented. 

5.2.2    Conventional Nonlinear Receivers 

Conventional digital receivers for VLF noise have an ad hoc zero memory nonlin- 

earity followed by a matched filter. The nonlinearity is generally either a clipper, 

blanker or hard limiter, although simulations show that the clipping amplifier is su- 

perior to the other two. The chosen nonlinearity operates on the signal plus noise in 

an attempt to suppress large, short duration impulses, thereby making an attempt 
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to "Gaussianize" the noise. Of course, the noise must be of significantly greater 

bandwidth than the signal for the process to be useful. Since a matched filter fol- 

lows, the goal is to eliminate as much of the impulse as possible from the band 

occupied by the signal while minimizing signal distortion, but this is largely a trial 

and error process since both the receiver's front-end bandwidth and the nonlinear 

device's threshold level must be chosen as part of the design. Since the noise is 

nonstationary, one or both of these parameters may have to be adjusted adaptively. 

The chosen nonlinearity may operate on a wideband receiver input, but simula- 

tions indicate that such receivers do not perform well. Although many sferics stand 

above all the man-made signals plus background noise, the effect of the nonlinearity 

on unwanted man-made interference is harmful to detection (after the nonlinearity) 

in the band of the signal. For this reason, the predetection bandwidth is chosen 

small enough to eliminate all adjacent man-made interference, and the nonlinearity 

is applied at baseband after downconversion. 

Clippers A clipper operates linearly unless the noise exceeds the range of +/— 

a given threshold, in which case the output is limited to the +/— threshold level 

regardless of the input. Not counting signal distortion, using a clipper results in a 

noise pdf that is truncated to the threshold value, with all the original probability 

outside of the threshold range now placed at the threshold values. The matched filter 

unit that follows thus sees noise that is somewhat similar to a Gaussian distribution 

with its tails cut off. 

Blankers Blankers (or hole punchers) simply set values outside some threshold 

range to zero, and so only those samples uncorrupted by large sferics enter the 

matched filter. Blankers perform poorly when compared to clippers because they 

discard data that carry significant information, even if those data are corrupted by 

impulses. 

Hard Limiters Limiters output one value for inputs greater than zero and the 

negative of that value for inputs less than zero. They are simple but do not perform 
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as well as clippers. 

Simulations Of the three conventional nonlinear receivers just described, the clip- 

ping receiver (a clipper followed by a matched filter) consistently performs the best. 

For the clipping receiver used in the simulations, a number of clipping threshold 

levels are used but only the one giving the best performance is shown for a given 

plot. 

5.2.3    Previous Receiver Studies 

This section briefly reviews previous work in developing various M-L and ad hoc 

receivers, all of which perform much better with impulsive noise than the linear 

matched filter receiver used for Gaussian noise. 

Many receivers have been developed using a small-signal approach, which ex- 

pands /x-s in a Taylor series and keeps only the zero and first order terms [30, 

39, 41]. Using this approximation, the M-L receiver is comprised of a zero-memory 

nonlinearity followed by a linear detector, and so it is similar to the conventional re- 

ceivers described above. However, the nonlinearity is an arbitrarily complex function 

that generally cannot be implemented in analog hardware. A small signal approach 

is often inaccurate because many low-frequency communication systems have quite 

large signals at their receivers (see Figure 4.2). 

Some studies choose distributions with heavier tails than those of the Gaussian 

distribution (e.g., Cauchy, Weibull or beta), determine the optimal receiver given 

the distribution, and derive receiver results either empirically or with computer gen- 

erated noise [10, 31, 35]. Unfortunately, the distributions used are often inaccurate 

for atmospheric noise. 

The one M-L receiver with possible applications to this work is the log-correlator 

receiver, the optimal receiver for noise with a Hall distribution [23]. For independent 

noise samples, the optimal receiver structure is an envelope detector followed by a 

logarithm operation followed by a summation. Since the Hall envelope pdf is found 

to very accurately represent impulsive noise under certain conditions, it is expected 
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that some form of this log-correlator receiver may be optimal in a practical VLF 

design. For this reason, the log-correlator is included in the simulation analyses. 

Studies of actual systems using a clipper/matched filter combination were carried 

out in the 1970's, when VLF systems were first being installed. Optimal clipping 

levels and front-end bandwidths are chosen experimentally and are system and lo- 

cation dependent; example results are contained in [8, 11]. 

5.3    Alpha-Stable Maximum Likelihood Receivers 

In order to develop an optimal M-L receiver for a-stable noise, knowledge of the joint 

distribution of the elements of an a-stable random vector is required. Assuming the 

elements are distributed symmetrically about zero, this joint pdf fa(n) is defined 

by the joint characteristic function 

$N(t) = e/Sl
t,sla^s), (5.1) 

where the surface S is the unit sphere and the spectral measure fj,(dS) is a uniquely 

determined finite symmetric measure on the Borel subsets of S [2]. (The variable t 

is equivalent to UJ_ in Section 3.2.3. Thus while a mean zero Gaussian random vector 

(a = 2) of length N is uniquely determined by an N x N covariance matrix, an 

a-stable random vector (a ^ 2) for even N = 2 requires infinite degrees of freedom 

to be specified. Thus it is impractical to determine the complete description of an 

a-stable random process from the noise. 

Even though several simplified types of a-stable processes exist (e.g., the sub- 

Gaussian, linear, and harmonizable forms [2]), none are applicable to the noise at 

hand. In order to proceed, a simplification is made by assuming that the elements of 

the vector are independent (but not identically distributed), an assumption justified 

by the statement in Section 2.6 that no appreciable correlations are found in adjacent 

samples of the background noise. Allowing the distribution (i.e., the parameters a 

and 7) to vary with time takes into account the rapid statistical variations in the 

noise caused by bursts of impulses. 
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Covariation As an additional measure of the lack of dependence from one noise 

sample to the next in VLF/LF noise, the concept of covariation is introduced and 

analyzed. Second order statistics such as covariance functions are not applicable 

for a-stable noise since the variance of a-stable noise is infinite, so the covariation 

coefficient is used instead. It is specified for a > 1 as XXY, where 

E(XYQ-J>) 
XY ~     E(\Y\P) (5"2) 

and 1 < p < a [40]. An estimator for XXY using p = 1 is then 

Xxr skim   • (5-3) 

No appreciable covariations are found for time differences greater than 1/B (where 

B is the bandwidth) when applying (5.3) to the data, again adding validity to the 

assumption that adjacent samples can be considered independent. 

5.3.1    Parameter Estimations of Alpha-Stable Distributions 

Since the noise samples are assumed to be independent but not identically dis- 

tributed, it remains to specify the two parameters a and 7 of the a-stable distribu- 

tion as a function of time, based on observation of the noise. Thus it is necessary 

to examine parameter estimation techniques for a-stable distributions. 

A number of parameter estimation techniques exist for a-stable distributions [37]; 

the two that are used in this dissertation are (i) histogram fitting and (ii) estimation 

of the characteristic function. The former is explained and used in Chapter 3; the 

latter is used here and is explained as follows: the characteristic function of an 

a-stable distribution is 

$x{u>) = E[ejwX] = e"*Ma, (5.4) 

and thus may be estimated from the data (assuming a symmetric distribution about 
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1   N 

zero) as 

<M") = ^ £«*(«*,■)• (5-5) 
1=1 

This is performed in the analyses for u € {0.5,1.0,1.5,2.0} and then a linear regres- 

sion is computed using 

log(- log $x (u)) = log(7) + a log(cj) (5.6) 

to determine a and 7. This procedure is found to give very accurate estimates of 

a and 7 when compared to the histogram fitting approach (which is assumed to be 

the most accurate) using as little as 50 data samples, and thus is used throughout 

the rest of this work. 

Since it is desired to estimate a and 7 adaptively from the received signal plus 

noise with as little computation as possible, two other parameter estimation schemes 

are considered as well. The two methods examined are (iii) to derive an estimation 

based on the number, size and relative times of localized impulses, and (iv) to derive 

an estimation based on a filtering process of the noise. Many possible implemen- 

tations of method (iii) were examined but none accurately predicted the localized 

values of a and 7 determined by the characteristic function estimation method. 

With method (iv), however, a simple averaging of the Zj norm is found to correlate 

very strongly with localized values of a and 7. The correlation coefficient of the h 

norm with a is roughly 0.7 and with 7 it is 0.9. 

5.3.2    Realizations of Alpha-Stable Receivers 

Four realizations of a-stable M-L receivers are developed and simulated, based on 

the parameters estimation techniques of the previous section. There are endless 

receiver specifications possible, but the four used here are typical examples and are 

chosen to demonstrate in some sense the best and worst cases. Of primary interest 

is the BER improvement realized by a-stable receivers. 

Receiver 1 has a priori knowledge of the best estimates of a and 7 for each one 

minute sample of data.  Changes on the order of milliseconds due to noise bursts 
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are not accounted for, so this receiver is typically the poorest performer among the 

four a-stable receivers. 

Receiver 2 has a priori knowledge of the best estimates of a and 7 on a symbol-by- 

symbol basis, with a minimum update period of 0.01 seconds and a maximum of 0.2 

seconds. Short-term estimates of the noise parameters tend to improve performance 

by accounting more accurately for bursts in the noise, especially for faster symbol 

rates. 

Receiver 3 estimates the parameters a and 7 on a simulation-sample by simulation- 

sample basis (the simulation sample rate is 2500/sec) by maintaining a 100 sample 

running average of the /x norm of the noise (without signal). This running average 

is used as the input to two separate linear functions to determine a and 7; the gain 

and offset of the linear equations are determined a priori. 

Receiver 4 is identical to receiver 3 except that the running average of the noise 

envelope magnitude is calculated from the signal plus noise. The noise envelope is 

estimated by subtracting off the worst-case (most distant) signal point, thus giv- 

ing an indication of worst-case performance for this type of parameter estimation 

scheme. 

The four receivers described above are somewhat arbitrary, but they are demon- 

strative of the performance that can be expected from practical a-stable receiver 

implementations. Receiver 2 typically performs the best of the four, since it has 

access to quick and accurate estimates of the noise. Receivers 1 and 4 typically 

perform the worst, 1 being slow to adjust and 4 being inaccurate in its parameter 

estimation. 

5.4    Simulation Results 

This section presents the results of hundreds of BER simulations performed using 

actual VLF/LF noise samples as additive input noise. Signal center frequencies 

range from 18 kHz to 45 kHz and span a number of times, locations and input 

bandwidths, and rectangular pulses are used as the symbol basis function. The 

simulations concentrate on those times and locations for which the noise is most 
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accurately modeled as a-stable, but other cases are considered as well. The goals of 

the simulations are as follows: (i) to compare clipping receivers to limiters and linear 

(matched filter) receivers, (ii) to show the effect of predetection bandwidth and/or 

symbol rate on BER, (iii) to compare the performance of a-stable receivers to that of 

clipping receivers, (iv) to determine performance differences between the four types 

of a-stable receivers listed in Section 5.3.2, and (v) to compute the performance loss 

when using 16 QAM rather than QPSK with a-stable noise. Note that (i) and (ii) 

confirm previously known results. 

The BER curves are plotted as a function of Eb/N0, where E\, is the energy per 

bit and No is twice the variance of the measured noise samples (so that No/2 is 

the variance). The use of No maintains consistency with previous literature, but is 

problematic due to the infinite second moment of a-stable noise. It must be noted 

then that BER comparisons cannot be made when using different noise samples; 

however, BER comparisons using the same noise sample (time, station, bandwidth 

and center frequency) are valid. Both two and four level constellations are examined 

(QPSK and 16 QAM); larger constellations are not considered due to the increased 

complexity required in the simulation algorithms. 

Figure 5.1 shows typical simulation results for QPSK signals in impulsive noise. 

The noise has a bandwidth of 2 kHz, centered about 26.5 kHz, and is from Arrival 

Heights during June of 1996. The symbol rate is 50/sec. The matched filter (the 

upper solid line) is clearly the worst performer, followed by the limiter, clipper, log 

correlator and type 2 a-stable receivers. The latter three are very close, however, and 

for most of the simulation plots they are essentially identical. This result confirms 

that a simple clipping amplifier followed by a matched filter is nearly optimal for 

QPSK, as first predicted in 1974 by Evans and Griffiths [11]. 

Figure 5.2 shows the simulation results for 16 QAM using the exact same noise 

samples as in Figure 5.1. In this case the two M-L based receivers, the a-stable and 

log-correlator receivers, are clearly optimal to the conventional nonlinear receivers. 

Most plots show the a-stable receiver a few tenths of a dB ahead of the log-correlator, 

and the latter at least 3 dB better than the rest at low BER (< 10~4). 

Figure 5.3 shows the performance of the four a-stable receiver types described 
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AH, 26.5 kHz CF, 2000 Hz detection BW, 50 sym/sec QPSK 

Figure 5.1: Typical BER curve for QPSK noise, comparing linear, limiter, clip- 
per, log correlator and a-stable receivers. The data are from June 1996 at Arrival 
Heights. The "linear" solid line is to the right of the "stable" solid line. 

in Section 5.3 for a 16 QAM constellation. As mentioned above, receiver 2 typically 

performs the best, although the others are often within 1.0 dB at BER's of 10-4. 

(The 2 dB difference seen in Figure 5.3 is somewhat of a worst case). 

It is mentioned earlier that decreasing the symbol rate or increasing the predetec- 

tion bandwidth can greatly improve performance, especially for noise characterized 

by large but infrequent impulses. These effects are shown in Figure 5.4, where the 

plots show BER curves for symbol times from 1-100 symbols per second and the 

three subfigures themselves show variation with predetection bandwidth. (Note that 

the one second per symbol curve on Figure 5.4(a) is off the left side of the plot). 

Comparison of the three plots demonstrates the large variation in measured No that 

results when large impulses are smoothed by narrower and narrower predetection 

filters. 

The final topic regarding the receiver simulations concerns QPSK versus 16 
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AH, 26.5 kHz CF, 2000 Hz detection BW, 50 sym/sec 16QAM 

8 10        12 
Eb/No 

14        16 18        20 

Figure 5.2: Typical BER curve for 16 QAM noise, comparing linear, limiter, clip- 
per, log correlator and a-stable receivers. The data are from June 1996 at Arrival 
Heights. The "linear" solid line is to the right of the "stable" solid line. 

TH, 43.4 kHz CF, 2000 Hz detection BW, 25 sym/sec 16QAM 

10 12 14 16 

Figure 5.3: BER comparison of four realizations of the a-stable receiver 
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QAM. The latter requires five times more energy than the former in order to main- 

tain the same minimum distance in the signal constellation, which translates to a 

5/2 (4 dB) handicap in energy/bit (as clearly seen when comparing the a-stable 

receivers in Figures 5.1 and 5.2 at a BER of 10~5). With impulsive noise, however, 

performance increases with symbol time for the same Eb/N0, so it is possible that 

this gap could be compensated for in some cases. The question of interest then is 

whether it more advantageous to transmit 16 QAM with symbol time 2T or QPSK 

with symbol time T, using the same average transmitted power. 

Simulation results show that 16 QAM with symbol time 2T does in fact give 

better performance than QPSK with symbol time T for high Vd noise and time- 

bandwidth products on the order of ten. This is due to the nature of impulsive 

noise, which when compared to Gaussian noise with the same N0 will have a much 

lower level of background noise. Since the idea of signal reception in sporadically 

impulsive noise is to evaluate the signal "between the impulses", it follows that a 

multilevel constellation could be transmitted with longer symbols to take advantage 

of lower level background noise, with no loss of data rate. 

Figure 5.5 shows BER's for three cases of QPSK versus 16 QAM. For low and 

high data rates, the 4 dB performance loss is clearly seen, but at 125 symbols/second 

16 QAM, the curves cross. At high data rates (only a few independent noise samples 

per symbol), a large impulse dominates the symbol regardless of the signal constel- 

lation. For low data rates, the greatest percentage of data samples per symbol are 

background noise and the BER curves roll off in a shape similar to those for Gaus- 

sian noise. For BT on the order of ten, however, the low-level background noise in 

a double length symbol can make up for a short impulse somewhere in the symbol, 

making 16 QAM a better option than QPSK for the same transmitted power. 

5.5    Conclusions 

This chapter shows the results of BER receiver simulations performed in order to 

compare a-stable receivers to common analog receivers. The conclusions drawn from 
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Symbol rate comparison, TH. 43.4 kHz CF, 2000 Hz BW, QPSK Symbol rate comparison, TH, 43.4 kHz CF, 600 Hz BW, QPSK 
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Figure 5.4: BER curves for five different symbol times using an a-stable receiver. 
The noise data are from June 1986 at Thule, Greenland, with a 43.4 kHz center 
frequency. 
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Figure 5.5: QPSK vs. 16 QAM, with 16 QAM at half the symbol rate of QPSK. 
The noise data are from Thule, Greenland, with a 43.4 kHz center frequency and a 
600 Hz bandwidth. 
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these simulations are as follows: (i) For VLF/LF digital communication systems us- 

ing a QPSK signal format, an a-stable receiver provides essentially no performance 

improvement over a conventional clipping receiver. (This result can likely be gen- 

eralized for all other constant amplitude constellations as well), (ii) For a 16 QAM 

signal format, a receiver optimized for a-stable noise provides several dB of perfor- 

mance improvement at low BER. (iii) High SNR communication systems operating 

in high Vd impulsive noise realize 1-2 dB better BER performance for the same bit 

rate and average transmitted power when using 16 QAM instead of QPSK. 



Chapter 6 

Conclusions 

This chapter summarizes the main results of the dissertation and discusses possible 

areas of future research. 

6.1    Summary of Results 

Chapter 2 introduces some of the statistical properties of low-frequency radio noise. 

It is found and/or verified that (i) seasonal and diurnal variations correlate well with 

global lightning patterns and can be used to track global climate change, (ii) the 

narrowband noise envelope pdf of low-frequency noise has the functional form of a 

Rayleigh pdf at low values of dynamic range but decays with an inverse power law 

at high values, (iii) interarrival time distributions indicate clustering of sferics with 

bursts on the order of one second in length, (iv) no appreciable correlations are found 

between the maximum amplitudes of adjacent sferics or between these maximum 

amplitudes and interarrival times, and (v) low-frequency noise can be viewed as the 

superposition of white Gaussian noise and discrete noise impulses from sferics. 

Chapter 3 describes three models used for low-frequency noise envelope pdf's 

and determines the parameters and accuracy of each model as a function of loca- 

tion, time and frequency. The parameters and errors of each model are found to 

vary with thunderstorm activity and the noise frequency and bandwidth. The chap- 

ter concludes that the Hall model is the optimal choice in terms of accuracy and 

95 
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simplicity for locations exposed to heavy sferic activity, and the a-stable model is 

best for those relatively distant from heavy sferic activity. 

Chapter 4 proposes a statistical-physical clustering Poisson model for atmo- 

spheric noise. According to the model, the sources of the noise are clusters of im- 

pulses with independent and identically distributed waveforms. Cluster occurrence 

is a spatial and temporal Poisson process with source distribution independent of 

direction and time. The impulses within clusters are defined as variable length Pois- 

son processes. It is verified that the clustering Poisson model accurately predicts 

the statistical features of the actual data, and thus proves to be a good candidate 

as a model for atmospheric noise. 

Chapter 5 shows the results of BER receiver simulations performed in order to 

compare a-stable receivers to common analog receivers. The conclusions drawn from 

these simulations are as follows: (i) For VLF/LF digital communication systems us- 

ing a QPSK signal format, an a-stable receiver provides essentially no performance 

improvement over a conventional clipping receiver, (ii) For a 16 QAM signal for- 

mat, a receiver optimized for a-stable noise provides several dB of performance 

improvement at low BER. (iii) High SNR communication systems operating in high 

Vd impulsive noise realize 1-2 dB better BER performance for the same bit rate and 

average transmitted power when using 16 QAM instead of QPSK. 

6.2    Topics for Future Research 

Possible topics for future research are as follows: 

• Building a hardware prototype of an a-stable receiver and using it in an ac- 

tual communication system would provide useful results on the improvement 

realized by such a receiver. The receiver would likely require digital signal 

processing (DSP) type integrated circuit hardware. 

• Obtaining more detailed results on the specification of the a-stable joint pdf 

of impulsive noise may provide opportunity to improve a-stable receiver struc- 

tures and algorithms. 
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• Acquiring and analyzing a continuous, worldwide collection of three axis ELF/ 

VLF/LF time-series data with extremely accurate system timing would allow 

direction finding and ranging to be included in the analysis and modeling. Such 

a database will be collected eventually, and will allow more accurate models 

of low-frequency atmospheric noise to be developed, especially regarding the 

specification of cluster waveforms in the clustering Poisson model. 
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